CSN1 – Venezia – 26 novembre 2024

Multi- TeV Muon Collider @ European Strategy IMCC input documents in preparation

BA BO FE FI GE MI MIB LNF LNL LNS NA PD PI PV RM1 RM3 TO TS Physics, Detector R&D, MDI, Crystals/Targets, Accelerator Activities RD_MUCOL @ CSN1 - ESPP_A_MUCOL @ GE - UE-MUCOL - UE-I FAST

EUR®-LABS

IFAST

ZON-INFRA-2022-DEV-01-01

Input document requirements

- ✓ Comprehensive summary (maximum 10 pages)
 a comprehensive and self-contained summary should address:
- scientific context
- objectives
- methodology
- readiness and expected challenges
- timeline
- construction and operational costs (if applicable)

✓ Back-up document

Additional information and details can be submitted in a separate back-up document

National input questions

- a) Which is the preferred next major/flagship collider project for CERN
- b) What are the most important elements in the response to 3a)?
- i. Physics potential
- ii. Long-term perspective
- iii. Financial and human resources: requirements and effect on other projects
- iv. Timing
- v. Careers and training
- vi. Sustainability
- c) Should CERN/Europe proceed with the preferred option set out in 3a) or should alternative options be considered:
 - i. if Japan proceeds with the ILC in a timely way?
 - ii. if China proceeds with the CEPC on the announced timescale?
 - iii. if the US proceeds with a muon collider?
 - iv. if there are major new (unexpected) results from the HL-LHC or other HEP experiments?

d) Beyond the preferred option in 3a), what other accelerator R&D topics (e.g. highfield magnets, RF technology, alternative accelerators/colliders) should be pursued in parallel?

e) What is the prioritised list of alternative options if the preferred option set out in 3a) is not feasible (due to cost, timing, international developments, or for other reasons)?

f) What are the most important elements in the response to 3e)? (The set of considerations in 3b should be used). 3

Scientific context

Strong interest in high-energy, high-luminosity lepton collider

- combines precision physics and discovery reach
- application of hadron collider technology to a lepton collider

Muon collider promises sustainable approach to the energy frontier

• limited power consumption, cost and land use → site evaluation and reuse of existing tunnels

Technology and design advances in past years

- reviews of the muon collider concept in Europe and US found **no insurmountable obstacle**
- **identified required R&D**, documented mainly in accelerator R&D Roadmap
- first parameters' report submitted October 2023

Aim at 10+ TeV and potential initial stage at 3 TeV NEW OPTION: initial 10 TeV stage at reduced luminosity Interim report <u>https://arxiv.org/abs/2407.12450</u>

Strong support by <u>P5 Report</u> @ December 2023

Towards a muon collider, Eur. Phys. J. C 83 (2023) 864

Colliders timescale: Snowmass2021

2050

2060

2030

2040

International UON Collider Collaboration

Options @ 10 TeV Scale

Proposal Name	Power Consumption	Size	Complexity	Radiation Mitigation
MC (14 TeV)	~300	27 km	ш	ш
FCC-hh (100 TeV)	~560	91 km	II	ш

2090

2090

2080

2070

MC-10-14 FCChh

RF Systems High field magnets Fast booster magnets/PSs High power lasers Integration and control Positron source 6D μ -cooling elements Inj./extr. kickers Two-beam acceleration e^+ plasma acceleration Emitt. preservation FF/IP spot size/stability High energy ERL Inj./extr. kickers High power target Proton Driver Beam screen Collimation system Power eff.& consumption

Objectives of the facility @ 10 or higher TeV

Cost and **power** consumption drivers, limit energy reach e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring

Muon Collider Forum Report

Accelerator R&D Roadmap

Technically limited timeline

Bright Muon Beams and Muon Colliders

Panel members: D. Schulte, (Chair), M. Palmer (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto Associated members: A. Grudiev, R. Losito, D. Lucchesi

presented to CERN Council in December 2021 published <u>https://arxiv.org/abs/2201.07895</u> now under implementation by LDG + Council...

Roadmap Plan

Begin 2021 2022	End 2025	Description	Aspira [FTEy]	ational [kCHF]	Min [FTEy]	imal [kCHF]
2021 2022	2025	Site and lawout	[FIEy]	[KCHF]	FIEV	IKCHF
2021	2025		155	200	12.5	200
2022	2026	Neutrino flux miti-	22.5	250	0	0
	2020	gation system	22.0	250	0	Ŭ
2021	2025	Machine-detector	15	0	15	0
2022	2025	Collider ring	10	0	10	0
2022	2025	High-energy com- plex	11	0	7.5	0
2021	2025	Muon cooling sys- tems	47	0	22	0
2022	2026	Proton complex	26	0	3.5	0
2022	2025	Collective effects across complex	18.2	0	18.2	0
2022	2025	High-energy alter- natives	11.7	0	0	0
2022	2025	High-field magnets	6.5	0	6.5	0
2022	2026	High-field solenoids	76	2700	29	0
2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
2021	2026	High Energy com- plex RF	10.6	0	7.6	0
2022	2026	Muon cooling RF	13.6	0	7	0
2024	2026	RF test stand + test cavities	10	3300	0	0
2022	2026	Muon cooling test module	17.7	400	4.9	100
2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
2022	2026	Target system	60	1405	9	25
2022	2026	Coordination and integration	13	1250	13	1250
		Sum	445.9	11875	193	2445
	2022 2022 2022 2022 2022 2022 2022 202	2022 2025 2022 2025 2021 2025 2022 2026 2022 2025 2022 2025 2022 2025 2022 2025 2022 2025 2022 2025 2022 2026 2021 2026 2022 2026 2022 2026 2024 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026 2022 2026	2021 2025 Collider ring 2022 2025 High-energy complex 2021 2025 Muon cooling systems 2022 2026 Proton complex 2022 2026 Proton complex 2022 2025 Collective effects across complex 2022 2025 High-energy alternatives 2022 2026 High-field magnets 2021 2026 Fast-ramping magnet system 2021 2026 High Energy complex RF 2022 2026 Muon cooling RF 2022 2026 Ryber test stand + test cavities 2022 2026 Cooling demonstrator design 2024 2026 Cooling d	2021 2022 2025 Collider ring 10 2022 2025 Collider ring 10 2022 2025 Collider ring 10 2021 2025 Muon cooling sys- tems 47 2022 2026 Proton complex 26 2022 2025 Collective effects across complex 11.7 2022 2025 High-energy alter- natives 11.7 2022 2025 High-field magnets 6.5 2022 2026 High-field magnets 6.5 2021 2026 Fast-ramping mag- net system 20.7 2021 2026 High Energy com- plex RF 10.6 2022 2026 Muon cooling RF 13.6 2024 2026 Rest stand + test cavities 10 2022 2026 Cooling demon- strator design 34.1 2022 2026 Cooling demon- strator design 34.1 2022 2026 Cooling demon- strator design 60 2022 <	Dial Dial Interface Interface 2022 2025 Collider ring 10 0 2022 2025 Kigh-energy complex 11 0 2021 2025 Muon cooling syshem 47 0 2021 2025 Proton complex 26 0 2022 2026 Proton complex 26 0 2022 2025 Collective effects 18.2 0 across complex across complex 11.7 0 natives natives 6.5 0 2022 2026 High-field magnets 6.5 0 2021 2026 Fast-ramping magnet system 27.5 1020 2021 2026 High-field magnets system 10.6 0 2021 2026 High-field system 10.6 0 2021 2026 High-field system 10.6 0 2021 2026 Muon cooling RF 13.6 0 20	2021 2022 2025 Collider ring 10 0 10 2022 2025 Collider ring 10 0 10 2022 2025 Collider ring 10 0 10 2021 2025 Muon cooling sys- plex 47 0 22 2021 2025 Muon cooling sys- tems 47 0 3.5 2022 2026 Proton complex 26 0 3.5 2022 2025 Collective effects across complex 11.7 0 0 2022 2025 High-energy alter- natives 11.7 0 0 2022 2026 High-field magnets 6.5 0 6.5 2021 2026 Fast-ramping mag- net system 2.7.5 1020 22.5 2021 2026 High Energy com- plex RF 10.6 0 7.6 2024 2026 RF test stand + test 10 3300 0 2024 2026 Kolon coolin

to deliver a 3 TeV muon collider by 2045 Technically limited timeline **Baseline design** Facility Conceptual Design Technical Design **Facility Construction** Demonstrator design Preparatory work Demonstrator Prototypes ling Demonstrator exploitation and upgrades Design and modelling Prototypes Scenarios Pre-series Production Cost and Ready to Ready to Performance Commit Construct Estimation Aspirational Mi [FTEy] [kCHF] [FTEy] ~70 Meu/5 years 445.9 11875 193 Not yet available the resources of the reduced scenario

Development path

Facing priorities with O(40 FTE)

Efforts to increase resources

Accelerator R&D Roadmap implementation

LDG review - February 24-26, 2025 @ CERN

to review:

- R&D plan
- Demontrator design and proposal

10 TeV Muon Collider Beam Requirements

Parameters	Symbol	$\sqrt{\mathbf{s}} = 10 \mathbf{TeV}$
Particle energy [GeV]	Е	5000
Luminosity $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	${\mathscr L}$	20
Bunch population [10 ¹²]	N_p	1.8
Transverse normalized rms emittance [μ m]	ε_n	25
Longitudinal emittance $(4\pi \sigma_E \sigma_T)$ [eVs]	ε_l	0.314
Rms bunch length [mm]	σ_z	1.5
Relative rms energy spread [%]	p_T	0.1
Beta function at IP [mm]	eta^*	1.5
Beam power with 10 Hz repetition rate [MW]	P _{beam}	14.4

- First collider ring site identified @ CERN
- SPS and LHC tunnels reused
- All construction on CERN
- Energy stages maybe 2.5 and 8 TeV

Muon Cooling Principle

CERN as a host site for Demonstrator

CERN: integration - Demonstrator in TT7

Demonstrator Facility: a crucial step forward!

FNAL

Planning **demonstrator** facility with muon production target and cooling stations

Suitable site exists on CERN land and can use PS proton beam

could combine with other option - synergies on neutrino and other measurements

International Muon Collider Collaboration: Demonstrator Workshop
 @ FNAL October 30 – November 1, 2024

multi-TeV Muon Collider: two colliders in one!

Energetic final states (either heavy or very boosted)

Large production rates, SM coupling measurements Discovery light and weakly interacting

Fabio Maltoni "Physics Overview" Annual Meeting IMCC

Strong and crucial synergies to design the machine and the experiment to reach the physics goals with energy and luminosity allowing % precision measurements

→ Physics benchmarks steer machine parameters and experiment design

Discovery potential

HL-LHC and FCC-hh exclusion mass reach for several beyond the Standard Model particles

Precision measurements

Sensitivity to the Higgs trilinear coupling modifier $\delta \kappa_{\lambda}$

Methodology

Plans towards the 10 or higher TeV center of mass facility:

- development of a muon cooling demonstrator within the next decade
 - ✓ planned stages: starting with a target and a few cooling cells towards constructing a full-power cooling system
 - \checkmark Operate and verify feasibility
- decision for the full collider facility:
 - ✓ the accelerator and collider rings can be designed to operate at different initial center-of-mass energies or luminosities

The constraint & the challenge to design and operate an experiment

Machine Detector Interface - beam-induced background

Background is a significant driver for MDI design - background sources:

• Muon decay

Workshop @ CERN 25 – 26 June 2024

• Beam halo losses and Beam-beam (mainly incoherent e-/e+ pair production)

International UON Collider

Detector concepts for 10 TeV collisions

under development two different layouts

(MUon System for Interesting Collisions)

MUSIC

(Muon Accelerator Instrumented Aperatus)

MAIA

Ongoing work to update to latest collider lattice for ESPPU

- BIB expected to have a harder energy spectrum: final performance comparable (larger stress on computing)
- Over the next several years, migrate reconstruction algorithms to fully exploit LHC know-how.:
 - Local pile-up subtraction \rightarrow BIB subtraction
 - Multivariate/AI approaches to flavour tagging (for which we demonstrated only basic inputs)

Unique background conditions

	Description	Relevance as background	
Muon decay	Decay of stored muons around the collider ring	Dominating source	
Synchrotron radiation by stored muons	Synchrotron radiation emission by the beams in magnets near the IP (including IR quads \rightarrow large transverse beam tails)	Small	
Muon beam losses on the aperture	 Halo losses on the machine aperture, can have multiple sources, e.g.: Beam instabilities Machine imperfections (e.g. magnet misalignment) Elastic (Bhabha) μμ scattering Beam-gas scattering (Coulomb scattering or Bremsstrahlung emission) Beamstrahlung (deflection of muon in field of opposite bunch) 	Can be significant (although some of the listed source terms are expected to yield a small contribution like elastic μμ scattering, beam-gas, Beamstrahlung)	
Coherent e⁻e⁺ pair production	Pair creation by real* or virtual photons of the field of the counter-rotating bunch	Expected to be small (but should nevertheless be quantified)	
Incoherent e ⁻ e ⁺ pair production	Pair creation through the collision of two real* or virtual photons emitted by muons of counter-rotating bunches	Significant	

Status: radiation environment

300

250

100

50

0

300

250

100

50

0

[편] ______ ______150

-300 - 200 - 100

-300 - 200 - 100

َ 200 أَ التي التي ا

BIB sets the requirements for radiation hardness of detector technologies.

Expected in line with HL-LHC

Yearly 1 MeV n. eq. fluence in Si in MUSIC detector

0

z [cm]

0

z [cm]

200

100

19

Experiment design requirements @ 10 TeV

Aim at **10+ TeV** and potential initial stage at **3 TeV NEW OPTION:** initial 10 TeV stage at reduced luminosity **Interim report** <u>https://arxiv.org/abs/2407.12450</u>

Strong interest in developing:

- 4D vertex and tracker sensors
- new calorimeters 4D or 5D ideas
- sustainable muon detector
- front-end electronics with on-board intelligence
- powerful reconstruction algorithm
- Al simulation and analysis tool

Detector technology R&D and design

- we can do the important physics with technology being implemented for HL-LHC upgrades or follow-ups
- available time will allow to improve further and exploit synergies and new emerging technologies

"Strong planning and appropriate investments in Research and Development (R&D) in relevant technologies are essential for the full potential, in terms of novel capabilities and discoveries, to be realised" ESPPU 2020

Requirement	Base	Aspirational	
	$\sqrt{s}=3~{ m TeV}$	$\sqrt{s}=10~{ m TeV}$	
Angular acceptance $(\eta = -\log(\tan(\theta/2)))$	$ \eta < 2.5$	$ \eta < 2.5$	$ \eta < 4$
Minimum tracking distance [cm]	~ 3	~ 3	< 3
Forward muons ($\eta > 5$)	-	tag	$\sigma_p/p\sim 10\%$
Track σ_{p_T}/p_T^2 [GeV ⁻¹]	4×10^{-5}	4×10^{-5}	1×10^{-5}
Photon energy resolution	$0.2/\sqrt{E}$	$0.2/\sqrt{E}$	$0.1/\sqrt{E}$
Neutral hadron energy resolution	$0.5/\sqrt{E}$	$0.4/\sqrt{E}$	$0.2/\sqrt{E}$
Timing resolution (tracker) [ps]	$\sim 30-60$	$\sim 30-60$	$\sim 10 - 30$
Timing resolution (calorimeters) [ps]	100	100	10
Timing resolution (muon system) [ps]	~ 50 for $ \eta >2.5$	~ 50 for $ \eta >2.5$	<50 for $ \eta >2.5$
Flavour tagging	b vs c	$b \operatorname{vs} c$	b vs c, s-tagging
Boosted hadronic resonance ID	h vs W/Z	h vs W/Z	W vs Z

Tracking studies

BIB and incoherent pairs affect reconstruction performance via hit multiplicity.

MInternational UON Collider Collaboration

Tracking performance well under control (using LHC CKF reconstruction)

The main bottleneck in algorithmic execution time

- The O(5%) inefficiencies present in the current reconstruction are caused by the need of keeping the CPU time within O(minutes) per event.
 Track parameter resolutions (pT, d0, z0) are unaffected by BIB.
- Expected to improve with future computing hardware and seeding strategies

Tracking studies: MUSIC efficiency/performance

Tracking system optimized for a better coverage up to the nozzle angle.

Performance evaluated with **BIB** and **incoherent pair production (IPP) events** produced with Interaction Region version EU24 frozen for ESPPU

Despite the high occupancy, track reconstruction optimized (not fully) to reach high performance.

The resolution on track parameters are not impacted by the BIB presence

Calorimeter studies

BIB impact on calorimetry more different across 10 TeV detector concepts

- Solenoid placement
- Technological choices semi-homogeneous (MUSIC) vs sampling (MAIA)

Performance close to minimal targets, limited by reconstruction algorithms (most notably clustering and background subtraction)

Internationa

ollaboration

JON Collider

Calorimeter studies: MUSIC with CRILIN

MUSIC calorimeter system:

- ECAL: CRILIN, CRystal calorImeter with Longitudinal *INformation* designed for MuC

σ (Δ E / E) [%]

12

0

- HCAL: Iron-scintillator sampling calorimeter common to other detectors

So far reconstructed: photons and electrons, jets in progress.

Muon Collider

Simulation, with BIB+IPP

EU24 lattice, vs=10TeV

50

100

200

150

Calorimeter studies: MUSIC with CRILIN

The electron are reconstructed for the first time in muon collisions at 10 TeV CoM

Tracks reconstructed with ACTS are matched to a ECAL cluster by using PandoraPFA. The results show that even if not optimized (there is no Bremsstrahlung recovery yet) the MUSIC detector performs very well also for electrons

Forward muons

Muon systems are almost free from BIB contributions

• Performance at 10 TeV not yet studied in detail, as it is not expected to be a challenging task

Both concepts don't foresee a dedicated muon spectrometer but rather rely on inner detector tracks with a PID match from a barebones muon system placed beyond the HCAL

 Choice motivated by track resolution being dominated by inner tracker measurement across pT spectrum

Forward (~10 deg) and very forward (5 deg) regions require dedicated studies and development of detector concepts for which only initial studies have been performed.

Readiness and expected challenges

Time-critical Developments

Identified three main technologies that can limit the timeline

Muon cooling technology

- **RF test stand** to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator
 - Muon beam production and cooling in several cells

Magnet technology

- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Important Developments

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Magnet Demands @ Muon Collider

Detector Magnet to be designed for 10TeV

Tentative Timeline (Fast-track 10 TeV)

Only a basis to start the discussion, will be reviewed by March 2025

Construction and operational costs (if applicable)

Financial and human resources: requirements and effect on other projects

In preparation for LDG and ESPPU

Careers and training

Muon Collider facility requires extensive studies and R&D across multiple key areas:

- target for muon production
- cooling of muon beams
- advanced magnets and radio-frequency systems for the accelerator and collider ring
- shielding structures for the detector.

A completely new and challenging field of research renewing the interest of students and young researchers in accelerator physics and experimental physics at particle accelerators

Opportunity to develop cutting-edge instruments while gaining hands-on training

Unique chance to contribute to the design, testing, and integration of a novel accelerator

- a multi-TeV muon collider has the smallest footprint compared to other alternatives
- the luminosity-to-electricity consumption ratio improves as the center-of-mass energy increases, making the muon collider significantly more energy-efficient than alternatives.

Energy efficiency of present and future colliders

Thomas Roser et al., Report of the Snowmass 2021 Collider Implementation Task Force, Aug 2022

consumption uncertainty for the different collider concepts.

The effective energy reach of hadron colliders (LHC, HE-LHC and FCC-hh) is approximately a factor of seven lower than

that of a lepton collider operating at the same energy per beam

US P5 – International partnership

Stability of the program requires implementing the framework for our international partnerships!

Parallel to the R&D for a Higgs factory,

the US R&D effort should develop a 10 TeV pCM collider (design and technology),

The US should participate in the International Muon Collider Collaboration (IMCC) and take a leading role in defining a reference design.

We note that there are many synergies between muon and proton colliders, especially in the area of development of **high-field magnets**. R&D efforts in the next 5-year timescale will define the scope of test facilities for later in the decade, paving the way for initiating **demonstrator facilities within a 10-year timescale** (Recommendation 6).

INAUGURAL US MUON COLLIDER COMMUNITY MEETING

FNAL – August 9, 2024

THE DREAM MACHINE

An accelerator known as a muon collider could revolutionize particle physics — if it can be built

Summary of activities towards R&D plans

Each WP is working to identify challenges and R&D plans towards a baseline design:

Ε

100

s [m]

120

140

- **Physics and MDI**
- Proton complex
- Target design
- **Muon Cooling**
- **Accelerator Complex**
- **Collider Ring**
- **RF** Technology
- Magnet Technology
- **Cooling cell integration**

Aperture at 5 σ + 2[cm]

Demonstrator

opstream instrumentation

and Matching

Collimation and

phase rotation

-0.4

0.0

0.2

0.4

z (m)

0.6

0.8

Towards a multi-TeV Muon Collider

FINAL GOAL:

to exploit the physics potential of such a unique facility aiming at the highest energy and highest luminosity

Advances in accelerator and detector pair with the opportunities of the physics case

- Time scale is conceived for a multi-TeV collider facility to be ready by 2050
- To get people engaged, in particular the Early career scientists, it is important also to get intermediate experimental setups/goals and synergies where the new technologies in their infant status may be tested
 Muon Collider Demonstrator with physics cases
- Synergies for enabling technologies opens new opportunities now and in the next 5-10 years
- The level of complexity requires to plan ahead evaluating the needs but with an open mind for ingenuity
- Detector and accelerator fields are a great playground to deeply understand Nature and benefit Society
- Donatella Lucchesi and Federico Meloni (DESY) are the IMCC contact for the Preparatory Group

Please partecipate to:

Workshop on FCC-ee and Lepton Colliders @ LNF - January 22-24, 2025 Muon4Future @ Venezia - May 26-30, 2025

Thanks to all the young and senior collabotators

Thanks for the attention!

Unique physics case – more studies planned

Status of IR lattice design @ 10 TeV

Challenges: small ß*, large ß functions in FF, strong chromatic effects

- D_x

	\sqrt{s} =3 TeV	\sqrt{s} =10 TeV
Version	US MAP	IMCC (v0.7)
FF scheme	Quadruplet (with dipolar component)	Triplet (with dipolar component)
ß*	5 mm	1.5 mm
L*	6 m	6 m
Max. field at inner bore	12 T	20 T

3 TeV IR lattice (MAP):

Proton-driven Muon Collider Concept

- Recommendation from 2008 Particle Physics Project Prioritization Panel (P5)
- Approved by DOE-HEP in 2011 → Ramp down recommended by P5 in 2014

AIM: to assess feasibility of technologies to develop muon accelerators for the Intensity and Energy Frontiers

IMCC Organization after the Roadmap

- Study Leader Daniel Schulte
 - Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers
 Collaboration Board (ICB)

CERN is host organisation, can be transferred to other partner on request of CERN and with approval of ICB Will review governance in 2024, US could join at that time

MoC signed by CERN CEA INFN STFC-RAL ESS IHEP and different universities in EU, US, China

19 countries: CERN, IT, US, UK, FR, DE, CH, ES.....

80 institutes

- - Flected chair : Nadia Pastrone
 - Steering Board (SB)
 - Chair Steinar Stapnes,
 - CERN members: Mike Lamont, Gianluigi Arduini,

Dave Newbold (STFC), Pierre Vedrine (CEA)

Beate Heinemann (DESY)

ICB chair and SL and deputies

- International Advisory Committee (IAC) •
 - Chair Ursula Bassler (IN2P3)

Coordination Committee

Project Organization

Preliminary study in detector magnet

Detector magnet workshop – 5 October 2023

Upon request from Detector group, some preliminary calculations on a possible solution for a detector solenoid has been performed, based on CMS cable

Main features:

- Tracker region: -2200 < z < 2200, 0 < r < 1500
- B at IP: 3.66 T
- B = 3.60 ± 0.08 T
- Field uniformity: ±2.3%
- (Almost no optimisation)
- Max Br = 0.12 T
- Stored energy: 2.25 GJ
- Current density: 12.3 MA/m²
- Total coil thickness: 288 mm
- Current: 19.5 kA
- Cable size: 72 x 22 mm²
- Inductance: 11.85 H

Realistic magnetic field map will be used in BIB generation and detector studies as soon as a decision is taken.

Main show stopper: no one produces aluminium stabilised cables Main advantage: similar to something existing & working

Site Studies

Candidate sites CERN, FNAL, potentially others (ESS, JPARC, ...)

Study is mostly site independent

- Main benefit is existing infrastructure
- Want to avoid time consuming detailed studies and keep collaborative spirit
- Will do more later

Some considerations are important

- Neutrino flux mitigation at CERN
- Accelerator ring fitting on FNAL site

aboration

Potential site next to CERN identified

- Mitigates neutrino flux
 - Points toward mediterranean and uninhabited area in Jura
- Detailed studies required (280 m deep)

Implementation plan options: staging

Important timeline drivers:

Magnets

- HTS technology available for solenoids (expected in 15 years)
- Nb₃Sn available for collider ring, maybe lower performance HTS (expected in 15 years)
- High performance HTS available for collider ring (may take more than 15 years)
 Muon cooling technology (expected in 15 years, with enough resources)
 Detector technologies and design (R&D plan starting, finalized design expected in 15 years)

Energy staging

• Start at lower energy (e.g. 3 TeV, design takes lower performance into account)

Luminosity staging

- Start at 10 TeV with the highest reachable energy, but lower luminosity
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)

Consider reusing LHC tunnel and other infrastructures

Could be much smaller with

improved HTS ramping magnets

Size scales with energy but technology progress will help

Not reused

- La sensibilita' dei futuri esperimenti di oscillazione di neutrino dipende fortemente dalla capacita' di ridurre l'impatto degli errori sistematici nell'ordine del %.
- Le incertezze nelle misure delle sezioni d'urto a bassa energia (0.3-5 GeV/c) e nei modelli montecarlo incidono nell'estrapolazione dei flussi dai Near Detector (ND) ai Far Detector (FD), limitandone la precisione dei risultati

Why a HP-TPC with optical readout as neutrino detector at low energy (below 1GeV)

- Target = detector
- 3D reconstruction capabilities.
- Possibility to exchange targets changing gas
- low density \rightarrow low thresholds
- excellent PID capabilities.
- Almost uniform 4π acceptance.
- low number of interactions → requires <u>high pressure</u> and large volume.
- requires in addition a magnet to measure momentum and to distinguish between neutrinos and anti-neutrinos
- Very large volumes require low cost per readout channel (pixel)

The flow of neutrinos at low energy produced by a demonstrator at CERN can fit very well the requirements for a neutrino's X-sec experiments

A neutrino interaction in the T2K near detector

Differences within models are at low KE and are below the threshold of a liquid argon device