December 5th, 2024

main discussion points

N. Bartosik ^(a, b)

Tracking sensors R&D

(a) UPO (Italy) (b) INFN Torino (Italy)

BIB environment

At the LHC we are used to backgrounds primarily from pile-up *pp* collisions ightarrow real tracks pointing at displaced vertices

Event at the CMS experiment with 78 reconstructed vertices

At the Muon Collider background tracks are not reconstructable

A cloud of looping tracks from soft electrons: <p⊤> = 3.5 MeV ►

Creates tremendous combinatorics for the classical outward track reconstruction

Nazar Bartosik

Timing resolution

Raw hit density in the Vertex Detector is unsustainable → up to 5K hits/cm² in a 15 ns time-integration window

High time resolution of ~30 ps to reject BIB hits outside of a narrow time window

Substantial number of BIB hits arrive earlier created by particles exiting close to the sensor

Nazar Bartosik

Background density varies across the tracker \rightarrow highest close to the tungsten nozzles (after time filtering)

Nazar Bartosik

Hit density

Material budget

Majority of the hits (up to 90%) created by primary electrons coming from the MDI outer surface

Nazar Bartosik

Secondary electrons

Technology I: RSD

Nazar Bartosik

hn						
	Thickness	PGAIN dose	Trench process	Trench depth	O IMP	NHO
	55	1.02	P2	D2		
<i>c</i> .	55	1.02	P2	D2	Y	Y
tirs	55	1.06	P2	D2	Y	Y
	55	1.06	P2	D2	Y	Y
	55	1.02	P2	D2		
	55	1.06	P2	D2		
	55	1.06	P2	D2	Y	Y
	55	1.02	P2	D2	Y	Y
	55	1.02	P2	D2		
	55	1.06	P2	D2		
	55	1.02	P2	D2	Y	Y
	55	1.06	P2	D2	Y	Y
	55	1.06	P2	D2	Y	Y
	55	1.02	P2	D2	Y	Y
	5	1.06	P2	D2	Y	Y

sistance

ce Al-Si

Gain dose (implan

• EPI batch validatic

Ongoing R&D project: 4DSHARE

Things to study: pad layouts, readout electronics, power consumption, radiation tolerance

Nazar Bartosik

ology I: DC-RSD

st tests of a 2x2 pixel prototype ongoing

DMAPS (Depleted Monolithic Active Pixel Sensor) - sensor + re

inner VTX layers

Nazar Bartosik

Perfect technology for the high-occupancy regions of the tracker:

Tracking sensors R&D

8

A more realistic digitizer in place: <u>MuonCVXDDigitiser</u> with implemented effects of noise, threshold and **charge sharing** → **realistic cluster shapes**

Things to implement: proper treatment of timing (pixel-level pile-up), shallow-angle particles Things to study: thicker sensors to improve signal/BIB separation, different readout schemes

Nazar Bartosik

Digitization

