MPGD-HCAL

L. Longo on behalf of Bari group

RD_MuCol Italia, Torino 4-6 Dec 2024

A MPGD Hadronic Calorimeter

Bari group proposal: a sampling hadronic calorimeter with micro-pattern gaseous detector as readout layers

MPGD features:

- cost-effectiveness for large area instrumentation
- radiation hardness up to several C/cm²
- discharge rate not impeding operations
- rate capability O(MHz/cm²)
- high granularity
- time resolution of few ns

Past work:

- <u>CALICE collaboration</u>: a sampling calorimeter using **gaseous** detectors (RPC) but also tested MicroMegas
- <u>SCREAM collaboration</u>: a sampling calorimeter combining RPWELL and resistive MicroMegas

Our plan \rightarrow systematically **compare** three MPGD technologies for hadronic calorimetry: resistive MicroMegas, µRWELL and RPWELL, while also investigating **timing**

HCAL R&D well included in DRD1-WP5 (Calorimetry) and DRD6-WG1 (Sampling Calorimeter)

INFN MPGD-HCAL BIB studies

Simulation: 60 layers of Iron (19mm) + Ar (3mm); 3 TeV layout

Hit Occupancy:

- BIB containment within the first 20 layers of HCAL
- Probability of a cell to be fired in the first layer :
 - **BIB** : ~ 1 x 10-5
 - $\pi^{\pm} 5 \text{ GeV}$: ~ 0.2 x 10-5
 - \circ **\pi^{\pm} 20 GeV** : ~ 0.8 x 10-5
- Challenge for low energy pion reconstruction

Arrival time:

- BIB arrival time distribution uniform in the range 7-20 ns;
- signal arrival time peaks at ~ 6ns;
- discrimination possible for t>9/10 ns → <u>achievable</u> with MPGD detectors

Full simulation: Digital Vs Semi-digital

- π[±] guns with energy ranging from 2.5 to 100 GeV;
- MPGD-HCAL with 1x1cm² pads
- only pions not showering in ECAL;
- reconstruction with Digital ReadOut (RO):

•
$$E_{\pi} = f^{-1} (\langle Nhit \rangle)$$

- reconstruction with SemiDigital RO (SDRO)
 - $\circ \qquad \mathsf{E}_{\pi} = \alpha \mathsf{N}_1 + \beta \mathsf{N}_2 + \gamma \mathsf{N}_3$
 - Thresholds considered for SDRO: 0.2, 4, 12 keV
- fit function $f(E)=S/\sqrt{E^{\oplus}C}$;
- comparable performances below 6 GeV between Digital RO and SDRO
- Digital RO: saturation at high energies
- Overall, better performances of the SDRO

 σ/E = 45.96%/√E⊕12.36%

R&D effort in collaboration with INFN-RM3, INFN-Fr, INFN-Na, Weizmann and CERN

2 test beam campaigns in 2023 and 2024:

- without absorbers for detector characterization,
- with absorber for shower studies $(\sim 1\lambda_{\rm l})$.

Prototypes produced and tested within **RD51 common project**:

- 7 μ-RWELL
- 4 MicroMegas
- 1 RPWELL

Detector design:

- Active area 20×20 cm²
- Pad size 1×1 cm²
- Common readout board

R&D effort in collaboration with INFN-RM3, INFN-Fr, INFN-Na, Weizmann and CERN

2 test beam campaigns in 2023 and 2024:

- without absorbers for detector characterization.
- with absorber for shower studies (~1 λ).

µRWELL efficiency

R&D effort in collaboration with INFN-RM3, INFN-Fr, INFN-Na, Weizmann and CERN

2 test beam campaigns in 2023 and 2024:

- without absorbers for detector characterization,
- with absorber for shower studies $(\sim 1\lambda_{\rm p})$.

2024

Ded

R&D effort in collaboration with INFN-RM3, INFN-Fr, INFN-Na, Weizmann and CERN

- 2 test beam campaigns in 2023 and 2024:
 - without absorbers for detector characterization,
 - with absorber for shower studies $(\sim 1\lambda_1)$.

Response uniformity measured using clusters matching muon tracks

- Good uniformity for MicroMegas (~10%)
- Regions of non-uniformity observed on some $\mu\text{-}RWELLs \rightarrow$ under investigation in lab
- Slightly worse uniformity for **RPWELL**

Detector	Uniformity (%)
MM-RM3	$(12.3 \pm 0.8)\%$
MM-Na	$(11.6 \pm 0.8)\%$
MM-Ba	$(8.0\pm0.5)\%$
RPWELL	$(22.6\pm4.7)\%$
μ rw-Na	(11.3 ± 1.0) %
μ rw-Fr2	$(16.2 \pm 1.7)\%$
µrw-Fr1	$(16.3 \pm 1.1)\%$

2D-MPV variation for MicroMegas-Bari

E I	8							1 1				-0.5
E 100	- ¹	0.062	-0.1	-0.0071	-0.023	0.034	-0.13	-0.049	-0.091	-0.094	- ¹	
×	- 0.24	0.056	-0.0078	0.014	0.026	0.052	-0.035	-0.11	-0.16	-0.17	0.16 -	0.4
50	- 0.094	0.086	0.026	-0.019	0.042	0.0056	-0.079	-0.052	-0.13	-0.12	0.0083 —	0.3
	- 0.15	0.057	0.031	-0.013	-0.035	0.081	-0.031	-0.069	-0.069	-0.14	-0.037	0.2
	- 0.11	0.065	0.018	0.015	-0.0041	0.015	-0.016	0.035	-0.063	-0.075	-0.054 -	0.1
o	0.22	0.14	0.061	-0.039	0.047	-0.025	0.062	0.15	0.057	-0.081		0
	- 0.15	0.053	0.034	0.033	0.02	-0.0098	0.03	0.019	-0.1	-0.12	0.14 —	-0.1
-50	- 0.066	0.015	-0.013	-0.01	0.0063	0.041	0.0045	0.026	-0.034	-0.084	0.05 —	-0.2
50	- 0.041	0.019	0.049	0.02	0.029	0.0018	-0.14	-0.013	-0.058	-0.11	0.077 —	-0.3
	- 0.12	-0.022	-0.013	-0.006	0.03	-0.028	-0.02	-0.078	-0.11	-0.0082	0.11 —	-0.4
-100	-	0.14	0.06	0.058	0.14	0.059	0.015	0.087	0.079	0.016		
	-100		4	-50				50		100 X (mm)		

MPGD-HCAL Test Beam

R&D effort in collaboration with INFN-RM3, INFN-Fr, INFN-Na, Weizmann and CERN

2 test beam campaigns in 2023 and 2024:

- without absorbers for detector characterization,
- with absorber for shower studies (~ $1\lambda_1$).

Number of hits distributions for MC and data at different pion energies ($E_{\pi}=f^{-1}(\langle N_{hit}\rangle)$)

Tracker

HCAL Prototype

2024

Ded

MPGD-HCAL future activities

- Finalize the studies with digital/semi-digital readout for the small prototype:
 - Current semi-digital threshold not optimize for MPGDs
- Development of a new cell prototype of ~2λ₁, including 8 20x20cm² chambers plus 4 50x50cm² chambers (2 Micromegas & 2 μRWELL, their production foreseen for beginning of next year):

New cell prototype **Readout Board** Triple-GEM tracker - Moveable to scan 50cm entire surface • 1λ with 20x20cm² beam • 8 dets, 8x2cm steel • 1λ with 50x50cm² • 4 dets, 4x4cm steel Allows to insert / extract steel absorbers Absorbers extracted

05 Ded 2024

MPGD-HCAL future activities

• 2025 plans:

- Profiting of DRD1 testbeams to perform 50x50cm2 chambers characterization during summer
- Asked for PS testbeam slot for Fall 2025:
 - aiming for a combine testbeam with CRILIN (?);
 - if we will not receive any testbeam period for next year, we need to target 2026.
- Both testbeams can be done next year only if we will receive the new chambers before spring, otherwise we will target only the september DRD1 testbeam
- understand the best technology between Micromegas and µRWELL, balancing performances and large area production feasibility & cost:
 - µrweel response disuniformity could be a bottleneck for mass production?

• Electronics:

- so far data collected with APV hybrids; too old, not able to sustain high rate and not supported;
- preliminary tests with VMM hybrids (ATLAS chip) show good results compatible with what observed with APVs;
- Interest in FAst TIming Integrated Circuit (FATIC) chip developed by our BARI electronics team.
- Long term plan (>>2026):
 - development of 50x100cm² MPGD detectors with and without embedded electronics;
 - starting thinking about cooling.

12

EINFN Backup

Beam-Induced Background

Challenges:

- muon is an unstable particle; its decay products interact with the machine elements generating an intense flux O(10¹⁰) of background particles: beam-induced background (BIB).
- Two conical tungsten shieldings (nozzles), cladded with borated polyethylene, allow the reduction of background by 2-3 orders of magnitude:
 - photons (~ 10^8),
 - neutrons (~ 10^8),
 - electrons/positrons (~10⁶)

The **BIB** comes mainly from **photons** (96%) and **neutrons** (4%):

- BIB decreases increasing the distance from the beam axis;
- average deposited energy lower than 1 GeV.

Fig. 25 BIB hit occupancy in the calorimenter barrel region in a single bunch-crossing.

Fig. 28 Energy deposited by the BIB in a single bunch-crossing in the HCAL.

G4 simulation: Digital Vs Semi-digital

λ~26 cm

π

Absorber 2 cm

Readout 5 mm

Standalone Geant4 simulation technology-independent

- Geometry of single layer:
 - 2 cm of iron for absorbers
 - \circ 5 mm gas (Ar/CO₂)
 - Readout granularity 1x1 cm²

Result: longitudinal containment in 10 λ , transversal in 3 λ

Energy resolution simulated in two scenarios:

- **Digital** calorimeter: shower energy proportional to total number of hits
- Semi-digital calorimeter: hits are weighted based on three thresholds $E_{\pi} = \alpha N_1 + \beta N_2 + \gamma N_3$

Result:

- resolution at 8% for $E_{\pi} \approx 80$ GeV with semi-digital readout
- resolution saturates at 14% for $E_{\pi} \sim 30$ GeV for digital readout

Full simulation: clusterization

INFN PEP lines Vs PEP dots

2022

PEP-Groove: DLC grounding through conductive groove to ground line

Pad R/O = 9×9mm² Grounding:

- Groove pitch = 9mm
- width = 1.1mm
- → 84% geometric acceptance

2023

PEP-DOT:

DLC grounding through conductive dots connecting the DLC with pad r/outs

Pad R/O = 9×9mm²

Grounding:

- Dot pitch = 9mm
- dot rim = 1.3mm
- → 97% geometric acceptance

DOT \rightarrow plated blind vias

CINEN Response uniformity

MicroMegas-Bari

ICHEP 2024