Tracking scintillator for Crilin TB

V. Ciccarella¹, E. Di Meco³, E. Diociaiuti³, R. Gargiulo ¹², I. Sarra ³

¹Sapienza University of Rome, ²INFN Section of Rome-1, ³INFN Frascati National Laboratories

Thu 5th Dec, 2024, RD_MUCOL Italia, Torino

Overview

VV Sec

- ► Selection of $1-e^-$ events + fiducial regions needed at Crilin TB
- ► Previous TBs with Si trackers in sinergy with HIKE not easy syncronization
- \blacktriangleright New idea: Scintillator + 16 SiPMs on facing-beam side \rightarrow "low-cost" tracking
- $\blacktriangleright\,$ EJ-200 $3\times3\,\text{cm}^2$ plastic scintillator tile with 0.5cm thickness
 - ▶ 10^4 photons/MeV light output, 0.9ns rise time and 2.1ns decay time
- ▶ $4 \times 4 \text{ mm}^2$ Hamamatsu SiPMs (at 41V) 50µm pixels → 52% PDE
- ► ESR on beam-facing side and charge sharing for position reconstruction
- ► Performances tested in LNF-BTF with a 450 MeV e⁻ beam
 - ► High efficiency (96%) + MIP counting capability + 150 ps timing
 - ► < 1 mm spatial resolution in two coordinates

Mechanics and electronics

- SiPMs coupled and kept in place with optical glue
- ► SiPMs connected to Crilin prototype board with wires
- ► 3D printed box to keep scintillator and wires still
- Assembly mounted on steel block together with the prototype board
- Beam alignment using BTF laser on box diagonals cross

Charge spectrum and total light yield

- ▶ 1 and 2 particles distinguishable in lead glass and scint. total charge
- $\blacktriangleright~$ 0.23 p.e./pC estimated with 2.7×10^6 SiPM and 10 FEE gain
- Large total p.e./MIP (1MeV deposit) $N \sim 710$
 - Compatible with an $\epsilon\sim 50\%$ light collection efficiency (run at center)
 - ► $10^4(N_{\gamma}) \times 28\%$ (Area ratio) × 52%(PDE) × $50\%(\epsilon) \sim 700$

Single particle events ID

- ► A simple cut on scint. total charge can reject 2 particle events
 - ▶ Q < 4000 pC: 83% eff. on 1 MIP 3% eff. on 2 MIPs (Plot 1)
 - ▶ Q < 5000 pC: 93% eff. on 1 MIP 5% eff. on 2 MIPs (Plot 2)
 - Efficiencies found using lead glass as truth (ratio of yields from gaussians)

Position reconstruction

- ► X and Y reconstr. as the mean of all charges weighted by SiPM positions
- > 2 gaussians fit to measure per-run yield, mean and resolution
- Edge effects visible at 1cm from the center
- ► In figure reconstr. X at 0, 5 and 10 mm from the center along a diagonal

Position calibration

- Cubic function fitted to calibrate X and Y response
- Saturation effect visible at the edges

Position resolution

- Beam spot size $\sigma \sim 0.4 {\rm mm}$ (from FitPix) subtracted in quadrature
- ► Resolution found after propagating calibration formula on per-run fitted std. dev.
- ► Inside a \pm 5mm region around the center, 0.5mm< $\sigma_{x,y}$ < 1mm
- ► Best resolutions reached when the beam impinges on a SiPM (highest charge)

BACKUP

Position residuals

 \blacktriangleright Normalized position residuals below 1 \rightarrow Position reconstruction under control

Efficiency

- 2 gaussian + flat bkg fit to lead glass charge in 1-MIP region
- ► (Cut-and-count / Fit integral) scale factor found from the run at center
- Per-run efficiencies estimated from the fitted number of events
- Efficiencies norm. with per-run lead glass cut-and-count yield, multiplied by global scale factor
- $\blacktriangleright~$ Very high $\sim 96\%$ average efficiencies

Timing

- ► Timing performances checked with time differences between near channels
- ► Ch9 and Ch10 (highest charges) from the run at center were used
- ▶ Found a $\sigma_{\Delta T} \sim 250 \text{ps}$, therefore $\sigma_T \sim 170 \text{ps}$
- ► σ_T close to ultimate value $\sqrt{\tau_R \tau_D / N_{p.e.}} \sim \sqrt{0.9 * 2.1/100} ns \sim 140 \text{ps}$
 - ▶ see doi.org/10.1016/j.nima.2018.02.074

Single channel charge spectra

- From now on, for all runs, cuts on lead glass charge applied (30-70pC \rightarrow 1MIP)
- $\blacktriangleright \sim 430$ pC (100 p.e.) MPV on central chs for run at center (4.2mm beam center SiPM center distance)
- $\blacktriangleright~\sim 1700$ pC (400 p.e.) for ch5, in a run with the beam pointing at its SiPM ~ 270 pC for ch6 and ch9 (6mm beam-SiPM distance)

 $\sim 140~\text{pC}$ for ch10 (8.5mm beam-SiPM distance)

Charge-position dependence

- Last slide data (charge, beam center SiPM center distance) plotted
- An exponential model for light propagation can be established
- $\blacktriangleright\,$ Fitted attenuation length of $\sim 3 {\rm mm}$

Preliminary operations

- SiPMs positions measured from a well-aligned picture (first slide)
- BTF beam fired on all SiPMS to validate channel map after assembly

Runs summary

V X

- One run per position
- ► Two diagonals scan at 2.5, 5, 10 mm from the center in each coordinate
- ► One test run (not reconstructed) at 15mm from the center to see the scintillator edge
- ► Some runs at 1mm from the center, most of them blinded

