CRILIN update

Building a large-scale prototype

- crystals (with 2 SiPMs in series per channel 1 channel per crystal).
- matrix for 3x3 crystals is done.
- Electronics: The design of the electronics has been finalized.

• SiPMs Procurement: 800 SiPMs (3x3 mm² with 10 µm pixel size) have been acquired, sufficient for 400

• MC Design: The Crilin full-scale prototype design in the Monte Carlo simulation has been completed.

• Mechanical Design: The first design of the new mechanical envelope is complete, and the prototype

DRD 6 Task 3: Deliverables Status

We are almost on schedule.

•We won an Italian grant for a small-scale prototype (5x5x5 layers).

of the full-scale prototype (details to follow).

Milestone

Crilin M3.8M3.9

•Funding from the agency is still delayed until 2025, which may cause potential issues with the readout

Deliverable	Description	Due date
D3.4	Acquisition and tests of crystals and SiPMs;	2024
	design and production of electronics boards;	
	design and production of the mechanical components	
D3.5	Calorimeter fully assembled	2025
	Beam test characterisation of a full containment	2025
	EM calorimeter prototype	
	Report on testbeam results	2026

Geant4 simulation of the new prototype

- Initial proposal 11x11 x6 layer (crystals 10x10x40 mm² each) \rightarrow 2.5 R_M 26 X₀
- Crystals wrapped in 150 um Mylar foils and placed a 150 um aluminum honeycomb
- 2 SiPMs 3x3 mm² per cystal, 2 mm thick, per layer
- 2 mm thck PcB, per layer
- Photostatistics and noise measured during beam tests : Poisson 0.3 p.e./MeV, Gauss 5 MeV

Number of crystals optimization

- optimized the number of crystals, with the goal of minimizing the energy resolution loss
 - \rightarrow optimization performed for an electron beam with 100 GeV of energy.

By setting a threshold similar to that expected for the Muon Collider (i.e. 40 MeV) per crystal, we

Number of layers optimization – 1

- The average number of crystals triggered above the threshold leads to a 7x7 configuration for layers 2, 3, 4, and 5.
- The sixth layer is crucial for maximizing energy resolution → longitudinal leakage creates a

much larger energy fluctuation compared to lateral leakage (for the same amount of leakage).

Number of layers optimization – 2

• The average number of crystals triggered above the threshold leads us to a 5x5 configuration for layers 1 and 6.

- Energy Resolution and Linearity as a function of E for the reduced matrix:
- 7x7 in layers 2, 3, 4, and 5, and 5x5 in layers 1 and $6 \rightarrow \sim 250$ crystals in total.

Energy resolution

2024: Prototype Development for Mechanics, Electronics, and Data Acquisition

For the acquisition of the required 250 channels, we have two options: • Custom front-end electronics paired with CAEN V1742 flash ADC digitizers (cost ~ 40+80k EUR needed) • CAEN A5204 board with integrated amplification electronics, based on the 64-channel Radioroc unit for FERS-5200 and Pico TDC (total cost for 250 channels ~ 60k EUR needed)

- CAEN board in a dedicated test beam at the beginning of 2025.
- tests, achieving timing O(20 ps) for deposited energies >1 GeV.

 \succ We have developed a 3x3 prototype compatible with both solutions and will assess the effectiveness of the

> The first solution (custom electronics and flash ADC) has already been proven effective in previous Proto-1

2024: Prototype Development for Mechanics , Electronics, and Data Acquisition

- January 2025
- and 16ch of discriminator \rightarrow for testing the time over threshold technique.

Simplified block diagram

Electronics status

Custom front-end electronics paired with CAEN V1742 flash ADC digitizers → ready before end of

In collaboration with LNF Cupid group we brought also a CAEN A5203 board, composed of picoTDC only

CAEN A5204 board acquired. Will be shipped to LNF on February 2025.

Opportunity with g-2 Crystals. Samples Obtained:

- Size: 24x24x130 mm³.
- Cut to our required dimensions: 10x10x40 mm³.
- Cutting operation handled by Silo.

• Cost of Operation:

- \in 80 + VAT per crystal (higher than expected).
- Still more economical compared to new Chinese crystals (~€110 + VAT).
- 30% savings with the g-2 crystals.

g-2 Station Requirements:

- Each station uses 54 crystals.
- We have enough to fill the entire matrix.

• Updated Proposal:

- Fill the matrix with approximately **330 crystals**.
- Total cost ~€30,000 (we already have ~35 good crystals).

• **Optimization**: Focus on improving the electronics to enhance performance and cost efficiency.

Crystals New Proposal

9 cm

61 Crystals x Layer 2-3-4-6 25 Crystals x Layer

Flash ADC and Funds

Confident in the completion of PADME by the summer of 2025, we can borrow the digitizers from them!

We have requested two test beams at CERN:

- scheduled for end of March 2025.
- lacksquareeverything is ready on time.

Costs and Available Funding:

•We still have approximately €100k from PRIN and RD_Mucol LNF.

•Estimated Costs (assuming our electronics design):

- Crystals purchase and cutting: €30k
- Crystals matrices: €10k, if made at Ferrara, €30k if made out INF
- SiPM matrices (~€5k per layer) + Kapton: €30k
- FEE electronics for 25 boards (16 channels each): €50k
- Cables: €5k
- CAEN A5818 links: €5k
- 2 Rubometers: €10k

One week at the PS (or SPS, either works) to test the electronics and make the final decision. The test is

Final test beam request: For late November at the SPS, with energies between 40 and 150 GeV. It's likely that they will postpone it to March 2026. We will monitor and assess the scheduling. I will work to ensure

We are almost there (about **€40k short + miscellaneous items**), but we need the DRD6 funding: we have requested €40k for FEE electronics and €80k for the digitizers. If PADME confirms, I would cancel the €80k request, but the new €50k for FEE electronics must be allocated 100%.

