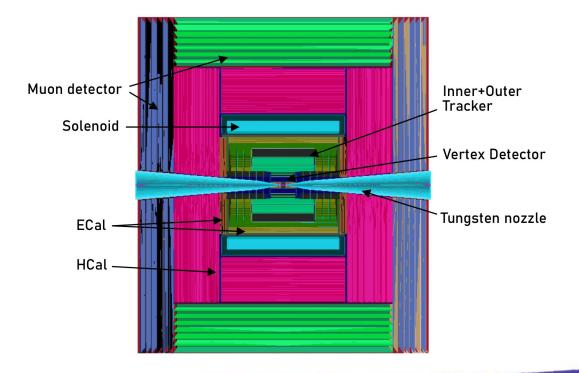
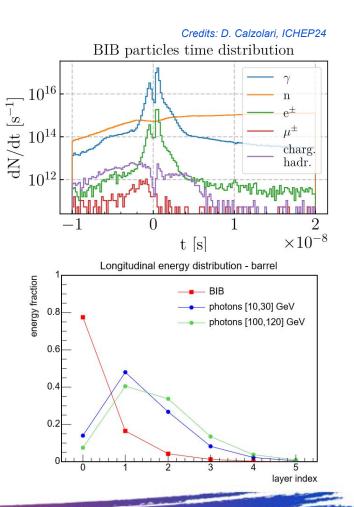
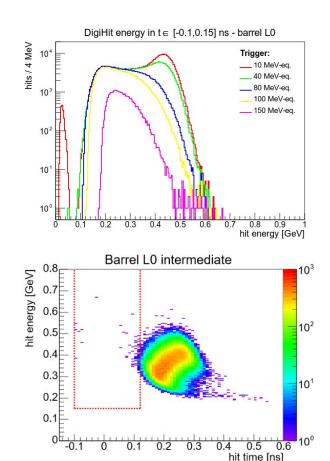
Calorimetry and particle reconstruction at the 10 TeV Muon Collider

<u>Palombini L.,</u> Giraldin C., Zuliani D., Sestini L., Gianelle A., Andreetto P., Lucchesi D., Casarsa M.


RD_MUCOL Italia, Turin 05/12/2024


MUSIC: a detector concept for the 10 TeV stage

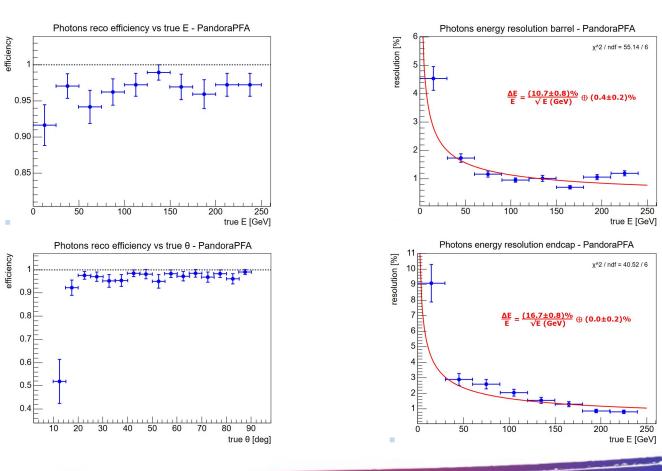
• For details, talk by <u>Massimo</u> and SIF contribution by <u>Carlo</u> (links)


CRILIN electromagnetic calorimeter

- O(100) cm⁻² BIB particles (mostly photons) at ECal surface per bunch crossing
 - \rightarrow >200 TeV deposited throughout the detector!
- Detector requirements:
 - \rightarrow time resolution < 100ps
 - \rightarrow longitudinal segmentation
 - \rightarrow high granularity
 - $\rightarrow \quad good \ energy \ resolution$
- CRILIN (next talk by <u>Ivano</u>) is the chosen technology
 - \rightarrow time resolution <50ps above 1 GeV
 - \rightarrow 1x1x4 cm³ cells
 - \rightarrow 6 layers implementation (26X0)

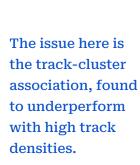
BIB mitigation at single-hit level in ECal

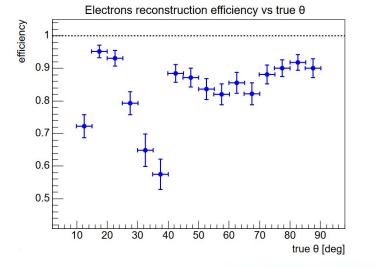

- Implemented a signal trigger emulation in Marlin's ECal digitizer
 - \rightarrow More realistic hit time assignment
 - \rightarrow independent trigger parameters for each layer
- Implemented time-energy selection of ECal hits
 - \rightarrow independent cuts for each layer
 - \rightarrow user can define detector regions to set local cuts
- In this study:
 - \rightarrow 3 Z-regions for ECal Barrel, 3 R-regions for Endcap
 - \rightarrow Trigger threshold set for each layer
 - \rightarrow Total hit energy threshold for each layer and region
 - \rightarrow Hit time window for each layer and region

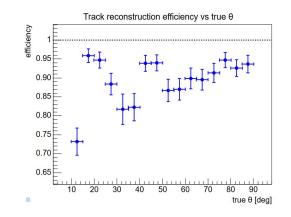

BIB mitigation at hit clustering level in ECal

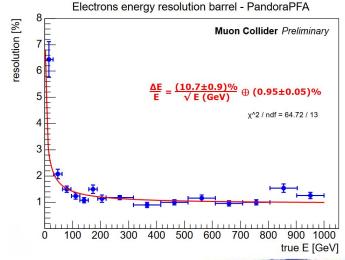
- Hit clustering in ECal is performed by PandoraPFA during particle reconstruction
 - \rightarrow designed for almost background-free environments (sub-optimal!)
 - \rightarrow but highly customizable
- The default Pandora workflow includes tens of clustering attempts with varying parameters
 - $\rightarrow ~~$ very optimized for CLIC detector, but hard to tune
- Simplified Pandora workflow: only one clustering attempt
 - \rightarrow allows detailed setting of the clustering parameters
 - \rightarrow optimize for best energy resolution and reconstruction efficiency
- Tested using single photons with 1-250 GeV energy

Event example before/after background mitigation




Performance with photons




Electrons reconstruction

- Tested the complete reconstruction chain with electrons of 1-1000 GeV
- Tracking via ACTS, reconstruction via PandoraPFA
 - \rightarrow Same ECal settings as photons
 - → Tighter track selection with respect to baseline $(1.1 \ 10^4 \text{ tracks post filter})$

Future improvements

- The ECal hit-level mitigation strategy is stable and reached good performance
- The ECal clustering has still large room for improvement, especially in the Endcap
 - \rightarrow desirable to develop an alternative clustering algorithm
 - \rightarrow reached 11%/VE in the barrel, hitting the target energy resolution for the MUSIC concept
- The track-cluster association is the main limiting factor for isolated electrons reconstruction
 - \rightarrow desirable to develop an alternative association algorithm
 - \rightarrow very large improvement margin with a quite limited effort

Thank you!

and the second se