

Status of $\sqrt{s} = 3 TeV$ MDI studies

L. Castelli, D. Lucchesi, D. Calzolari, F. Collamati

Detecting Forward Muons

- Instrumenting the nozzle:
 - Small detector
 - High dose from BIB
- Analysis approach:
 - Three scoring layers implemented in FLUKA
 - Simulation of Forward Muons and BIB
 - Identification of Forward Muons candidate

- The goal is to **evaluate**:
 - % forward muon tagged
 - # fake forward muon from BIB

Detecting Forward Muons

- Instrumenting Nozzles
- $\mu^+\mu^- \rightarrow ZZ + \mu^+\mu^- \rightarrow H + \mu^+\mu^- \rightarrow W^+W^- + \mu^+\mu^-$
- Readout window ±100 ps w.r.t. bunch crossing
- Rough tracking of muons in layers (100% efficiency)

Location	Fraction	
Detector	25.0%	74.5%
All layers	49.5%	tagged
$1 \leq layer \leq 2$	0.8%	
Beam Pipe	24.7%	

Measuring Forward Muons Energy

- Not feasible with track-like detector
- Energy deposit detector in the cavern only way

Nozzle Geometry Optimization

Goal:

- Reduced the BIB flux entering the detector area
- Maximizing the detector acceptance

Approaches:

- Manual tuning with high statistics simulation
- Many low statistics simulation to train
 Machine Learning algorithms
- Bayesian optimization iterating *medium* statistics simulation

Machine Learning results

Method:

- Nozzle geometry described by 8 parameters
- ~13000 FLUKA simulation performed considering 0.02% of a bunch crossing varying the parameters
- Several ML model trained and data transformation techniques applied
- Models evaluated according to $\Delta[\%] = \frac{Flux_{true} Flux_{predicted}}{Flux_{true}} * 100$
- Goal:
 - Using a ML model to perform large amount of pseudo-simulation
- Results:
 - XGBoost regressor + Standard Scaling is the best model
 - Gaussian fit of Δ distribution results in: $\overline{\Delta} = -0.12\%$, $\sigma = 5.24\%$

Bayesian Optimization Results

Bayesian Optimization Loop:

- Loop that builds a probabilistic model based on past evaluation during each iteration
- Model makes an educated guess on where the best solution

is in the parameters phase-space

- Application to Nozzle optimization:
 - Loop with 126 iteration, simulating with FLUKA 0.06% of a bunch crossing, varying 8 geometrical parameters
 - Flux of particles entering in the detector area used as metric
- The algorithm did not converge to an optimal solution
 - Low statistics could be the cause

Optimized Geometry

- Considering both Manual Tuning and Machine
 Learning studies a new design has been achieved
- Main features:
 - Base radius reduced
 - Nozzle body further reduced starting at 450 cm from the IP
 - Borated polyethylene coat moved under a layer of tungsten
 - Tip moved few millimeters further from the IP

Optimized Geometry

Beam-Induced Background:

- Reduced photon and e^+/e^- flux
- Reduced occupancy in the tracking system
- Increased neutron flux
- Overall consideration:
 - Easier to sustain
 - Less material needed
 - Increased detector acceptance
 - BIB impact on tracking system and ECAL reduced
 - BIB impact on HCAL increased

Complex observable

$$flux \rightarrow a \cdot \frac{\Delta flux_{\gamma}}{flux_{ref_{\gamma}}} + b \cdot \frac{\Delta flux_{n}}{flux_{ref_{n}}} + c \cdot \frac{\Delta flux_{e}}{flux_{ref_{e}}} + d \cdot \frac{\Delta V}{V_{ref}}$$

Method:

- *a*, *b*, *c*: Plot sub-detector specific metric as function of BIB flux (Energy resolution in CALs, occupancy in vertex)
- *d*: Takes into account costs and acceptance gain. No idea on

how quantify in relation to the other parameters yet.

Thank you for the attention

References

[1] Y. Alexahin, E. Gianfelice-Wendt, A 3-TeV MUON COLLIDER LATTICE DESIGN, <u>Insiperhep.net</u>

- [2] P. Li, Z. Liu, K. Lyu, HIGGS WIDTH AND COUPLINGS AT HIGH ENERGY MUON COLLIDERS WITH FORWARD MUON DETECTION, <u>arxiv.org</u>
- [3] M. Ruhdorfer, E. Salvioni, A. Wulzer, INVISIBLE HIGGS FROM FORWARD MUONS AT A MUON COLLIDER, <u>arxiv.org</u>
- [4] MODE Collaboration, <u>mode.github</u>
- [5] A. Baranov et al., OPTIMIZING THE ACTIVE MUON SHIELD FOR THE SHIP EXPERIMENT AT CERN, <u>SHIP optimization</u>
- [6] Z. Liu, HIGGS WIDTH AND COUPLINGS AT HIGH ENERGY MUON COLLIDERS WITH FORWARD MUON DETECTION, <u>indico.cern</u>

BIB simulation with FLUKA

- Generated one beam of μ^+ decays within **55** *m* from the Interaction Point
- Energy threshold for particles production fixed at 100 keV
- Particles which arrives to the nozzles are scored
- Propagation through the Nozzles
- Particles who exit the nozzle and enters the detector area are scored
- $\sim 1.6\%$ of one BIB event (i.e. bunch crossing) considering

only 1 beam \rightarrow 4 *days* per simulation

Muon decay position

15

BIB simulation with FLUKA

16

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- \diamond 30x30 mm² cell size;

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- ightarrow 22 X₀ + 1 λ₁.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

Detector

superconducting solenoid (3.57T)

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Forward Muon in Nozzle

BIB characteristics

• By requiring a window of $\pm 100 \ ps$ with respect to the expected time of arrival in the layers

BIB reduced by 5 order of magnitudes

19

BIB characteristics

BIB particles passing through the layers within the time window (1.4% of b.c)

(a rough) Tracking

Assuming that forward muons are

produced at the IP, a straight line

is the defined for each point in

layer 1

- The line is propagated to layer 2 and 3. If at least 1 particle is present in the expected position
 - $\pm 1 \ cm$, the particle is tagged as a forward muon

Machine Learning results

Limits:

- Fixed value of parameters
- Each sample is a different combination on fixed parameters

Next Steps:

- 9th parameters considered
- All independent values in a defined range
- 20000 simulation

Hard ML results

Feature Importance with XGBoost regressor

Bayesian Optimization Results

Next steps:

- 9 parameter simulation
- High statistics used (1.6 % of bunch crossing)
- It will take about 2 month

High Statistics Approach

- Lessons learned:
 - The Beam Pipe cannot be touched
 - Is Boreth layer really effective?
 - Tried to put the Boreth inside the nozzle

Optimized Geometry

- Real tungsten alloy simulated:
 - Same spectra
 - 9% more particles

Low Statistic simulation

- Two step: 2% of one beam, one bunch crossing
- Pipeline: 0.025% of one beam, one bunch crossing
- Pipeline nozzles smaller than

original (aperture = 20 cm)

• $\sigma = \sqrt{\# particles}$

ML Studies

- 2*1200 simulation performed with minimum beampipe radius 0.3 (original) and 0.35
- 3 geometrical parameters:
 - $\theta_{tip} \in [3.8; 10]^\circ \rightarrow 10$ values
 - $|z_{change}| \in [50; 200] \text{ cm}$
 - \rightarrow 15 values
 - $r_{base} \in [20; 60] \text{ cm} \rightarrow 8 \text{ values}$
- 0.02% of 1 bunch crossing simulated
- Due to input settings, the real nozzle

aperture is \rightarrow

$$\theta_{nozzle} = tan^{-1} \left[\frac{(94 \cdot \tan \theta_{tip}) \cdot r_{base}/60}{|z_{change}|-2} \right] \in [0.7; 18]^{\circ}$$

Incoherent Pair Production

Another source of background due to beam-

beam interaction

- Produced the e^{\pm} pairs with GUINEAPIG
- Products propagated in FLUKA as for two
 Step Simulation
- Reconstruction in the tracking system
- Slightly increase in occupancy (about 5%)

Improving the ML

New Nozzle Prototype

30

• Two new parameters:

- $z_{step} \in [-450; -200] cm$
- $r_{step} \in [0.75; 0.95] * r_{base}$
- 3125 samples (5 values

per each parameter)

Improving the ML - 2

New Nozzle Prototype

31

Two new parameters:

- $z_{tip} \in [-8; -4] \ cm$
- $r_{tip} \in [0.6; 1.4] \ cm$
- 2187 samples (3 values per each parameter)

Nozzle Design XVI

32