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Detecting Forward Muons

Scoring plane

▪ Instrumenting the nozzle:

• Small detector

• High dose from BIB

▪ Analysis approach:

• Three scoring layers implemented in 

FLUKA

• Simulation of Forward Muons and BIB

• Identification of Forward Muons 

candidate 

▪ The goal is to evaluate:

• % forward muon tagged

• # fake forward muon from BIB
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Detecting Forward Muons
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Scoring plane

▪ Instrumenting Nozzles

▪ 𝜇+𝜇− → 𝑍𝑍 + 𝝁+𝝁− → H + 𝝁+𝝁− →

𝑊+𝑊− + 𝝁+𝝁−

▪ Readout window ±100 𝑝𝑠 w.r.t. bunch crossing

▪ Rough tracking of muons in layers (100% 

efficiency)

Location Fraction

𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 25.0%

All layers 49.5%

1 ≤ 𝑙𝑎𝑦𝑒𝑟 ≤ 2 0.8%

Beam Pipe 24.7%

74.5%
tagged



Measuring Forward Muons Energy
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▪ Not feasible with track-like detector

▪ Energy deposit detector in the cavern 

only way 

Immagine che contiene schermata, linea, Parallelo, Rettangolo

Descrizione generata automaticamente
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Nozzle Geometry Optimization

▪ Goal:

• Reduced the BIB flux entering the 

detector area

• Maximizing the detector acceptance

▪ Approaches:

• Manual tuning with high statistics 

simulation

• Many low statistics simulation to train 

Machine Learning algorithms

• Bayesian optimization iterating medium 

statistics simulation

▪ Figures of merit:

• Occupancy on the tracking system

• Integrated flux of particles entering the 

Detector area

𝑟𝑏𝑎𝑠𝑒

𝑧𝑐ℎ𝑎𝑛𝑔𝑒
𝜃𝑛𝑜𝑧𝑧𝑙𝑒
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Machine Learning results

▪ Method:

• Nozzle geometry described by 8 parameters

• ~13000 FLUKA simulation performed considering 0.02% of a 

bunch crossing varying the parameters

• Several ML model trained and data transformation techniques 

applied

• Models evaluated according to Δ[%] =
𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒−𝐹𝑙𝑢𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐹𝑙𝑢𝑥𝑡𝑟𝑢𝑒
∗ 100

▪ Goal:

• Using a ML model to perform large amount of pseudo-simulation

▪ Results:

• XGBoost regressor + Standard Scaling is the best model

• Gaussian fit of Δ distribution results in: ഥΔ = −0.12%, 𝜎 = 5.24% 
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▪ Bayesian Optimization Loop:

• Loop that builds a probabilistic model based on past 

evaluation during each iteration

• Model makes an educated guess on where the best solution 

is in the parameters phase-space

▪ Application to Nozzle optimization:

• Loop with 126 iteration, simulating with FLUKA 0.06% of a 

bunch crossing, varying 8 geometrical parameters

• Flux of particles entering in the detector area used as metric

▪ The algorithm did not converge to an optimal solution

• Low statistics could be the cause

Bayesian Optimization Results

Bayesian Optimization Loop
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▪ Considering both Manual Tuning and Machine 

Learning studies a new design has been achieved

▪ Main features:

• Base radius reduced

• Nozzle body further reduced starting at 450 cm 

from the IP

• Borated polyethylene coat moved under a layer 

of tungsten

• Tip moved few millimeters further from the IP

Optimized Geometry
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▪ Beam-Induced Background:

• Reduced photon and 𝑒+/𝑒− flux

• Reduced occupancy in the tracking system

• Increased neutron flux

▪ Overall consideration:

• Easier to sustain

• Less material needed

• Increased detector acceptance

• BIB impact on tracking system and ECAL reduced

• BIB impact on HCAL increased

Optimized Geometry
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Complex observable

▪ Method:

▪ 𝒂, 𝒃, 𝒄: Plot sub-detector specific metric as function of BIB flux 

(Energy resolution in CALs, occupancy in vertex)

▪ 𝒅: Takes into account costs and acceptance gain. No idea on 

how quantify in relation to the other parameters yet.

 

𝑓𝑙𝑢𝑥 → 𝑎 ∙
Δ𝑓𝑙𝑢𝑥𝛾

𝑓𝑙𝑢𝑥𝑟𝑒𝑓𝛾

+ 𝑏 ∙
Δ𝑓𝑙𝑢𝑥𝑛

𝑓𝑙𝑢𝑥𝑟𝑒𝑓𝑛

+ 𝑐 ∙
Δ𝑓𝑙𝑢𝑥𝑒

𝑓𝑙𝑢𝑥𝑟𝑒𝑓𝑒

+ 𝑑 ∙
Δ𝑉

𝑉𝑟𝑒𝑓



Thank you for the attention
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BIB simulation with FLUKA

▪ Generated one beam of 𝜇+ decays within 𝟓𝟓 𝒎 from the 

Interaction Point

▪ Energy threshold for particles production fixed at 

𝟏𝟎𝟎 𝒌𝒆𝑽

▪ Particles which arrives to the nozzles are scored

▪ Propagation through the Nozzles

▪ Particles who exit the nozzle and enters the detector 

area are scored

▪ ~1.6% of one BIB event (i.e. bunch crossing) considering 

only 1 beam → 𝟒 𝒅𝒂𝒚𝒔 per simulation
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Muon decay position



BIB simulation with FLUKA

16



17

Detector
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Forward Muon in Nozzle



BIB characteristics
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▪ By requiring a window of ±100 𝑝𝑠 with respect to the expected time of arrival in the layers 

BIB reduced by 5 order of magnitudes



BIB characteristics
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▪ BIB particles passing through the layers within the time window (1.4% of b.c)



(a rough) Tracking 
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▪ Assuming that forward muons are 

produced at the IP, a straight line 

is the defined for each point in 

layer 1

▪ The line is propagated to layer 2 

and 3. If at least 1 particle is 

present in the expected position 

± 1 𝑐𝑚, the particle is tagged as a 

forward muon

?

?
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Machine Learning results

▪ Limits:

• Fixed value of parameters

• Each sample is a different combination on 

fixed parameters

▪ Next Steps:

• 9th parameters considered

• All independent values in a defined range

• 20000 simulation

𝑟𝑏_𝑡𝑖𝑝
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▪ Feature Importance with XGBoost regressor

Hard ML results
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▪ Next steps:

• 9 parameter simulation

• High statistics used (1.6 % of bunch crossing)

• It will take about 2 month

Bayesian Optimization Results

Bayesian Optimization Loop
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High Statistics Approach 

▪ Lessons learned:

▪ The Beam Pipe cannot be touched

▪ Is Boreth layer really effective?

▪ Tried to put the Boreth inside the nozzle
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▪ Real tungsten alloy simulated:

• Same spectra

• 9% more particles

Optimized Geometry
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Low Statistic simulation

▪ Two step: 2% of one beam, one 

bunch crossing

▪ Pipeline: 0.025% of one beam, 

one bunch crossing

▪ Pipeline nozzles smaller than 

original (aperture = 20 cm)

▪ 𝜎 = #𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠



ML Studies
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▪ 2*1200 simulation performed with 

minimum beampipe radius 0.3 

(original) and 0.35 

▪ 3 geometrical parameters:

▪ 𝜃𝑡𝑖𝑝 ∈ 3.8; 10 ° → 10 values

▪ |𝑧𝑐ℎ𝑎𝑛𝑔𝑒| ∈ 50; 200 cm

→ 15 values

▪ 𝑟𝑏𝑎𝑠𝑒 ∈ 20; 60 cm → 8 values

▪ 0.02% of 1 bunch crossing simulated

▪ Due to input settings, the real nozzle 

aperture is →

𝑟𝑏𝑎𝑠𝑒

𝑧𝑐ℎ𝑎𝑛𝑔𝑒

▪ 𝜃𝑛𝑜𝑧𝑧𝑙𝑒 = 𝑡𝑎𝑛−1 (94∙tan 𝜃𝑡𝑖𝑝)∙𝑟𝑏𝑎𝑠𝑒/60

𝑧𝑐ℎ𝑎𝑛𝑔𝑒 −2
 ∈ 0.7; 18 °

𝜃𝑛𝑜𝑧𝑧𝑙𝑒
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Incoherent Pair Production

▪ Another source of background due to beam-

beam interaction

▪ Produced the 𝑒± pairs with GUINEAPIG

▪ Products propagated in FLUKA as for two 

Step Simulation

▪ Reconstruction in the tracking system

▪ Slightly increase in occupancy (about 5%)
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Improving the ML

▪ Two new parameters:

▪ 𝑧𝑠𝑡𝑒𝑝 ∈ −450; −200 𝑐𝑚

▪ 𝑟𝑠𝑡𝑒𝑝 ∈ 0.75; 0.95 ∗ 𝑟𝑏𝑎𝑠𝑒

▪ 3125 samples (5 values 

per each parameter)
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Improving the ML - 2

▪ Two new parameters:

▪ 𝑧𝑡𝑖𝑝 ∈ −8; −4 𝑐𝑚

▪ 𝑟𝑡𝑖𝑝 ∈ 0.6; 1.4 𝑐𝑚

▪ 2187 samples (3 values 

per each parameter)
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Nozzle Design XVI
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