MUSIC Solenoid

Andrea Bersani

Old tentative design

- → To start, I took parameters from CLIC-based design
- \frown I assumed a ~ 50 mm gap for muon chambers between iron layers (magnet design not so sensitive to this, at this level)
- \frown 6 layers in the end-caps, 7 layers in the barrel
- → Total coil length 7.8 meters, diameter 7.3 meters
- \frown Field at centre 3.75 T
- \checkmark Very similar calculations in M. Mentink slides

Non optimised design

Torino, Dec. 2024

March 2024 design

Torino, Dec. 2024

- \frown Central field: 3.66 T
- → Stored energy: 2.25 GJ
- → Current density: 12.3 MA/m²
- → Total coil thickness: 288 mm
- \frown 6 layers:
 - \frown Current: 17.7 kA
 - \frown Cable size: 48 x 30 mm²
 - → Inductance: 14.4 H
- \frown 4 layers:
 - \frown Current: 19.5 kA
 - \frown Cable size: 72 x 22 mm²
 - → Inductance: 11.85 H
- → No big difference, slight improvement \neg A cable to be completely designed for both options (and a supplier must be found)

4 or 6 layers

To be noticed:

Forces are non trivially contained No optimisation on longitudinal stress at today Some more clever splitting in sub-coils will be needed This is a challenging design, overall Stray field is still high Magnetic properties of tungsten alloy are unclear

Interaction with collider magnets to be investigated

Some remarks on field quality

- ∽ Tracker region: -2200 < z < 2200, 0 < r < 1500</p>
- ∽ B at IP: 3.66 T

$$hightarrow B = 3.60 \pm 0.08 \,\mathrm{T}$$

- → Field uniformity: ±2.3%
- \frown (Almost no optimisation)
- \neg Max Br = 0.12 T
- \frown Non optimised values
- → B at IP: 3.75 T
- \neg B = 3.63 ± 0.2 T
- → Field uniformity: ±5.5%
- \frown (No optimisation)
- \neg Max Br = 0.2 T

B [te	sla]]	
Max: 3	3.681		
	3.690		
	3.672		
	3.654		
	3.636		
	3.618		
	3.600		Т
	3.582		
	3.564		
	3.546		
	3.528		
	3.510		
Min: 3	517		
	X		

- \neg Maximum field on conductor: 4.05 T
 - → NbTi stabilised in aluminium can work properly
 - \sim CMS cable seems very promising as a starting point for the development
 - \frown No company is producing this cable
 - \sim No trivial alternative is available IMHO
- → Hoop stress is possibly not terrible
 - attempted
- \frown No optimisation at all has been performed \frown Some interface with the detectors can possibly be defined

 \neg Forces on the coil are HUGE (super preliminary results - no sense to give numbers at this stage)

 \sim Stress management via sub-coils with mechanical supports, reduction of Br and other tricks can be

Autumn iteration

Torino, Dec. 2024

a fa 'n f

é	yón.	600	94600	s
	/	/		
(/	/
/		//	/	
/		())	/	1
	//		. ,	
	/			
/	/	/		/
/		/	/	

Outer HCAL design

New design parameters

- → Tracker region: -2200 < z < 2200, 0 < r < 1500
 </p>
- → B at IP: 3.66 T
- \neg B = 3.60 ± 0.08 T
- → Field uniformity: ±2.3%
- \frown (Almost no optimisation)
- \neg Max Br = 0.12 T
- → Outer HCAL design
- → B at IP: 3.8 T
- \neg B = 3.5 ± 0.5 T
- → Field uniformity: ±14.2%
- \frown (No optimisation)
- \neg Max Br = 0.55 T

B [tesla]					
Max: 4.018					
	4.10]			
	3.98				
	3.86				
	3.74				
	3.62				
	3.50				
	3.38				
	3.26				
	3.14				
	3.02				
	2.90				
Min: 2	2.996				
		-			

- and detector design would be desirable
- → Presently, manpower is insufficient
- \neg The solenoid can be placed both inside or outside the HCAL \frown different optimisation will be required \frown presently, field uniformity is way better with a large solenoid
- \frown No technical show stopper is evident at this stage \frown but the cable, which is being investigated by CERN and KEK

Conclusion and outlook

 \sim To achieve a feasible, reliable and satisfactory magnet model a deeper integration between magnet

