

Detector performance studies

Massimo Casarsa

INFN-Trieste, Italy

RD_MUCOL Italia – Torino, December 4-6, 2024

The roadmap

- Design of a new detector concept for μμ collisions at 10 TeV (MUSIC):
 - subdetector layout rearranged to accommodate deeper calorimeters;
 - tracker geometry optimized for a uniform coverage;
 - 5 T magnetic field;
 - new nozzles.

INFN

- Retuning/optimization of the reconstruction algorithms both at lowand high-level to cope with the machine-induced backgrounds (samples generated at 10 TeV with consistent machine lattice and MDI):
 - background from muon decays (BIB);
 - background from incoherent e⁺e⁻ pair production.
- Ongoing assessment of the reconstruction performance for main physics objects:
 - tracks;
 - photons and electrons;
 - jets and flavour tagging;
 - 🕨 muons.
- Ultimate goal: use these objects on benchmark physics channels.

10 TeV	BIB	e⁺e⁻ pairs
Photons	9.9E+07	4.0E+06
Neutron	1.1E+08	1.3E+05
e+/e-	1.2E+06	2.1E+05

INFN The MUSIC detector concept

MUon System for Interesting Collisions

Track reconstruction

4

INFN

Photon reconstruction

INFN

Electron reconstruction

NFN

INFN Jet reconstruction

NFN Background from muon decays

- Beam-induced background (BIB) from muon decay products interacting with the machine components and the shields inside the detector (nozzles):
 - soft particles and mostly out of time w.r.t. the bunch crossing:
 - ► ~10⁸ photons, ~10⁷ neutrons, and ~10⁵ electrons/positrons enter the detector at every bunch crossing in the time window [-1, 15] ns.
- Extensively studied with MARS15 and FLUKA.

NFN Bkg from incoherent e⁺e⁻ pair production

- Background from incoherent e⁺e⁻ pairs produced at bunch crossing:
 - relatively high-energy e[±], which enter the detector at the interaction point in time with the bunch crossing;
 - **b** photons ($\sim 10^6$), neutrons ($\sim 10^5$), and electrons/positrons ($\sim 10^5$);
 - affects mainly the vertex detector and the inner tracker layers.
- The solenoidal B field helps in confining most of the e[±] in the innermost region close to the beampipe.