UFJF CYGNO ML Projects

Rafael A. Nóbrega with Igor Pains, Guilherme Lopes, Jórdan Leite and Luan Gomes

Team and Projects on ML

Team

- \rightarrow Prof. at UFJF Rafael A Nóbrega Ο
- \rightarrow PhD student Guilherme Lopes Ο
- \rightarrow PhD student Igor Pains Ο
- Ο
- Luan Gomes 0
- Jordan Leite \rightarrow PhD student
 - \rightarrow Undergraduate student (soon in our Master's program)

Algorithms under implementation

- U-Net to improve SNR of images (possible extensions) Ο
- CNN for trigger purposes 0
- ANN, Gradient Boosting, Random Forest and CNN for NR detection Ο

ML past projects on CYGNO

- Clustering iDBSCAN
 - JINST journal (2020) and Abritta's PhD thesis (2020)
- Filtering impact on CYGNO data applied to LEMON (using standard filters and U-Net)
 - Guilherme's Master thesis (2021)
- Long track clustering Directional DBSCAN
 - MEASUREMENT SCIENCE and TECHNOLOGY (2023) and Pains' Master thesis (2024)

 Main goal → create and study "fast" algorithms that can select images with signal (or discard noise-only images).

What was done...

- Two approaches were considered:
 - Based on **filtering**.
 - Based on **CNN**.
- Comparative analysis:
 - **Detection performance** on low energy simulated signals.
 - **Time** analysis.
 - Comparison with the **reconstruction algorithm.**

Trigger based on filtering (correlation)

selected based on training data

Trigger based on filtering (correlation)

Trigger based on CNN

Trigger based on CNN

Dataset

- Training:
 - **Noise dataset:** 600 images from pedestal runs (Run 4 underground).
 - **ER and NR signal simulation:** 600 images each containing **0.25-1 keV** signals added to pedestal runs (different from noise dataset).

• Validation:

- **Noise dataset:** 200 images from pedestal runs.
- **ER and NR signal simulation:** 200 images each containing **0.25-1 keV** signals.

• Test:

• Same configuration as validation.

Trigger performance

• CNN

- **80% detection eff.** (fixed)
- 0.5% false alarm.
- Gaussian filter
 - **80% detection eff.** (fixed)
 - 10% false alarm
- Both methods **outperforms** the **reconstruction** code in detecting **0.25 keV** signals.
- All methods can **easily detect** signals with energies above **0.5 keV**.

Processing time

Higher detection performance comes at the cost of slower processing time.

Next steps

- Study methods to simplify the CNN model (on going)
 Bit reduction, weight combination, pruning and vectorization.
- Test popular CNN architectures such as AlexNET, GoogleLeNet, Unet with necessary adaptations.
- Apply the CNN on the DAQ machine.
- Write a paper based on these results.

U-Net application

- Main goals:
 - improve the pre-processing stage (semantic segmentation)
 - improve clustering performance
 - reduce clustering time
 - Improve detection, energy estimation, etc
 - investigate performance for:
 - clustering and particle identification

U-Net pixel-wise classification

Contract step is used to build feature maps using convolution;

Expand step will upsample these features to allow pixel wise-relationship between input and output;

Using U-Net in reconstruction algorithm

Training U-Net

- **Focal Loss** used to deal with Imbalanced data (most part of image is background)
- **Precision** and **recall** to evaluate performance of pixel-wise classification on 0.5 threshold.

Preliminary results of U-Net (0.25 and 0.50 KeV)

Improvements on processing time

Improvements of event detection

Method	Reco	Unet + Reco
Detected events (%)	68	86

Next step

- Optimizes DBSCAN parameters for U-Net outputs
- Study impact of U-Net on energy estimation (on going)
- Write a paper based on these results.

Future possibilities with U-Net

- Use transfer learning approach to explore new possibilities:
 - energy estimation
 - directionality detection
 - particle classification

NR detection

• Main goal \rightarrow detection of NR events

What was done and very next steps

• Find a suitable architecture (using all the 36 variables):

recently started

very preliminary

- ANN
- Gradient Boosting (GBC)
- Random Forest (RFC)
- CNN
- Feature selection
 - with Random Forest and Gradient Boosting (not applied yet)
 - Genetic Algorithm (on going)
- Apply Atul's work inputs and outcomes (on going)
 - Use selected variables
 - Use dataset (simulated and real events)
 - Apply same pre-processing

Training data with RFC and GBC

Training data with ANN

Used dataset

Energies in a range from **1-60 keV 6** energy levels **1000** events per level

Very Preliminary Results

Training with all energies - Background Rejection vs Signal Efficiency

Conclusions and next steps

- The first step has been taken toward continuing the Atul's work
- A very preliminary study has been done for ER/NR classification
 - RFC, GBC, ANN (CNN to be included)
- Results showed divergences and similarities with Atul's results
 - By now, the comparison is not trivial and direct

• Next steps:

- Pre-processing (Geo and noise cut, outlier removal)
- Robust feature selection
- Data augmentation
- Apply Atul's work inputs and outcomes
- Include other background events (and possibility PMTs)

- Re-evaluate performance

Atul's dataset

Energies in a range from **2-50 keV 25** energy levels ~10000 events per level

Used dataset

Energies in a range from **1-60 keV 6** energy levels **1000** events per level

General Conclusions

General Conclusions

- By the moment we are working on three fronts:
 - Image Trigger by CNN (could/should be merged with the PMT signal)
 - Igor Pains
 - SNR improvement using U-Net (that can be extended to achieve other goals: clustering, classification, ...)
 - Guilherme
 - NR detection using ANN, RF, GBC, CNN
 - Jórdan and Luan
- NR detection has just started \rightarrow many things to do
- All of them can be further studied and optimized (on going)

