

Trigger algorithm based on image processing

Igor Pains

with Rafael Nóbrega

Summary

Introduction

- 1
- Motivation
- What was done

Algorithms

2

3

4

- Filtering
- CNN

Results

- Datasets
- Trigger detection
- Treinamento

Conclusions

- Conclusions
- Next steps

1. Introduction

Motivation

- One of the biggest challenges for the **CYGNO experiment** in the long term will be to manage and store all the data produced by the detector.
 - Each run containing **400 images** need **~1.36 Gb** to be stored.
 - A **single day** of acquisition may produce **~266 Gb** of data.
- The main objective of this work was to study algorithms capable of **distinguishing** which images contain any kind of **signal** or only **electronic noise.**
- This proposal was called **image-based trigger algorithm.**

What was done

- Two algorithms were proposed:
 - Based on **filtering.**
 - Based on **CNN.**

• Comparative analysis:

- **Detection performance** on low energy simulated signals.
- **Time** analysis.
- Comparison with the **reconstruction algorithm.**

2. Algorithms

CNN architecture

3. Results

Datasets

• Training:

- **Noise dataset:** 600 images from pedestal runs (Run 4 underground).
- **ER and NR signal simulation:** 600 images each containing 0.25-1 keV signals added to pedestal runs (different from noise dataset).

• Validation:

- Noise dataset: 200 images from pedestal runs.
- **ER and NR signal simulation:** 200 images each containing 0.25-1 keV signals.

• Test:

• Same configuration as validation.

Trigger performance

- The CNN can detect 80% of the 0.25 keV NR and ER from the test dataset with a ~0.5% false alarm.
- The Gaussian filter would have ~10% false alarm to have the same detection performance.
- Both methods outperforms the reconstruction code in detecting 0.25 keV signals.
- All methods can **easily detect** signals with energies above **0.5 keV.**

Processing time

- The Gaussian filter needs ~0.25 and ~0.02 s per event using CPU¹ and GPU² respectively.
- The CNN needs ~0.55 and ~0.2 s per event using CPU and GPU respectively.
- A higher detection performance is compensated with a slower processing time.

¹CPU: Notebook01 cloud ²GPU: Tesla T4 Google Collab

4. Conclusions

Conclusions

- The results show that the **trigger algorithms** based on the **Gaussian filter** and **CNN** can achieve a **80% signal detection** rate on **0.25 keV ER** and **NR** simulated events with a **10%** and **0.5% false alarm** rate respectively.
- The CNN algorithm needs a GPU to have a proper time margin to predict the data, whereas the Gaussian filter may be used with a CPU.
- All the signals detected by the reconstruction algorithm were detected by the trigger algorithms.

Next steps

- Study methods to simplify a trained CNN model: Bit reduction, weight combination, pruning and vectorization.
 - First attempt did not work, on going.
- Apply the CNN on the DAQ machine.
 GPU: Quadro RTX 5000
- Test popular CNN architectures such as AlexNET, GoogleLeNet, Unet with necessary adaptations.
- Write a paper based on these results.

Thank you

Credits

This is where you give credit to the ones who are part of this project. Did you like the resources on this template? Get them for **free** at our other websites. Presentation template by <u>Slidesgo</u>

Icons by <u>Flaticon</u>

Images & infographics by <u>Freepik</u>

Author introduction slide photo created by **katemangostar** - Freepik.com

Big image slide photo created by **jcomp** - Freepik.com

Text & Image slide photo created by **rawpixel.com** - Freepik.com

Text & Image slide photo created by **Freepik**