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Inspiral Merger Ringdown
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(Top) Kip Thorne; (Bottom) B. P. Abbott et al.; adapted by APS/Carin Cain
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and Beyond

Linear Quasi-Normal Modes

» Small Amplitude Perturbations of the final BH metric
» Obey Linearized Einstein Equations

» Characterized by discrete set of frequencies

» Describe the Ringdown Signal very accurately

Where do the non-linearities go?
h(1)
h(2)
h(1)



Quadratic Perturbations

Detected in Numerical GR by [Cheung et al. 23]
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Quadratic Perturbations

Detected in Numerical GR by [Cheung et al. 23]
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Characteristic Strain
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Detectability by LISA claimed by [Berti et al. '24]
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Black Hole Perturbation Theory

Metric Ansatz
Metric Perturbations hf},,), hﬁ)

S =8uw + ehE}V) + ezhg)

he hy | — P\ 2 vectors hry, hy_ In Regge-Wheeler gauge

h. — hr | —H 2 vectors hey, by hty =hp =hy =h_=0
: 3tensors hy, h_, he Even | Odd sector
7+3
| Gauge fixing
YAB = (1 cin2 0) ) YZ,m, DAYZ,m, €AB DAYZ,ma o 4 1— 2constraint eqlls
e—iwt’ R[w] > 0, R[w] <O 1+1
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Black Hole Perturbation Theory

Einstein Equations

Einstein Equations in vacuum

_ o
GO [g] = o (trivial) e ‘
v _9_%_. g .
61 Gg}-j) [h(l)] =0 [ e . ﬁ—‘mtm

2 GM )] = G [ch®), chD] = 25,,, [AD, AV

Symmetries of Background

= Can take eigenstates of angular momentum, frequency, and parity,
and dynamics will not mix them.
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Black Hole Perturbation Theory

Master Scalars, Linear Orde.r )
The two physical d.o.f. of the graviton are captured by master scalars

v = iQ[ “h, +m<f b — (25|

- . 2.
b= [8,ht (- —hr_) — 0k, — th]

2f( r)

Einstein equations reduce to the Regge-Wheeler and Zerilli equations

dipy
dr?

2ihy —Va(r)e =0, ro=r+In (ﬁ—l)

Knowing v+ we can fully reconstruct the metric
hw <— P+
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Linear Quasi-Normal Modes

Green function decomposes into [Leaver '86]
» Prompt Response (high frequency/free propagation)
» Quasi-Normal Modes (poles)
> Late time tail (cut) Numerical results by [Mitman et al. 24]

QONMs are found by imposing boundary conditions

,lp ~ Aelwr*7 ’l/) x e*lwr*
ry——+00 Fx—>—00

where A is the QNM amplitude.

Many techniques available: Leaver method (fully numerical), (high order) WKB,
Uniform approximations, Liouville Theory, ...
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Iz | Uniform (2-nd order) | 6-th order WKB \
2 0.3854 4+ 0.0909i (3.1%) 0.37371 +0.08892i(0.014%)
0.3590 + 0.2796i (3.1%) 0.34672 +0.27388i (0.0089%)
0.3146 + 0.4868i (2.8%) 0.30005 +0.47883i (0.2%)
0.2670 4 0.7146i (2.4%) 0.24551 + 0.71159i (1.2%)
0.000 + 249.771i (0.06%) —
3 0.6075 4+ 0.0935i(1.3%) | 0.59944 + 0.09270i (0.000049%)

0.5909 + 0.2837i(1.3%) | 0.58264 + 0.28129((0.00088%)
0.5605 + 0.4830i (1.3%) 0.55160 + 0.47906i (0.013%)
0.5215 + 0.6956i (1.3%) 0.51111 + 0.69049i (0.1%)
0.4807 4+ 0.9219i (1.2%) 0.46688 + 0.91799i (0.39%)
0.4428 +1.1591i (1.1%) 0.42437 +1.16253i (1.%)

=
gl wink o Slwn ik lofs
o

Table: The quasi-normal frequencies of a Schwarzschild black hole in units where GM = 1.

[BB, Adrien Kuntz, Francesco Serra, Enrico Trincherini '23]
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for Quadratic Order Modes

Before doing any computation, let’s exploit symmetry.
Couple two linear modes of given
frequencieswy », angular momenta (¢12,ma2), parityP12,=0,1
> coswite Ml coswyte "2 oc (cos(wy 4wy )t + cos(wy — wop)t)e™ (1)t
> (= |ly —Ls|,..., 01 +2; m1+my=m (Clebsh-Gordan coefficient)
b (—1)atP(_1)tPe = (_1)HP

But what are the amplitudes of the quadratic modes?
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Black Hole Perturbation Theory

Master Scalars, Quadratic Order

Similarly, defining the master scalars zpi using hm,, they obey

OW&

it w2p? — v (nNe® = sjp®, M) « Source term

[Huietal.’22; Spiers,Pound,Wardell '23]

2

But wi) diverge at large r as w x r2 e so for them

» ONM boundary conditions cannot be imposed

» Cannot extract a finite amplitude A
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Resolution

The Good Master Scalars

Divergences due to poor choice of master scalars
[Ioka, Nakano’07; Brizuelaetal. 09]

hffy) = D;wwg:z)] + [divergent terms],,,
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Resolution

The Good Master Scalars

Divergences due to poor choice of master scalars
[Toka, Nakano’'07; Brizuela et al. ’09]

hffl) = Dw[ngf)] + [divergent terms],.,
For each Parity sector, we redefine 1/12_3) — lligf)
W = @ L AeDe®, A = cor? +car
choosing ¢4, ¢y to reabsorb divergences.

\Uf) obeys RWZ equation with new source term.

v o~ A@ el can impose QNM b.c. and extract A®).

I« ——+00
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Transverse-Traceless gauge
We can now reconstruct the metric h,(tz,,) in Regge-Wheeler gauge.

To extract the physical waveform, we go to asymptotically transverse-traceless
gauge and extract 4, x polarizations

hih = O(r™2), hgl = 0(r™), AT = O(r°), h = O(r)

RIT L RIT RIT
Xt = xt e €D (x) 4 € €2 (x) has = ( Car R hTT)
_ o -+

AN = Lewgu, ARG = Lo + 3208w + L)
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Physical Waveform

Quantifying outgoing radiation

Finally, a convenient parametrization is the Newman Penrose scalar Wy
. M ;
‘U4 = h-‘r - [bx = T ZAsze—lweN(r*_t) —Zyem(07¢)7 N = (n7:|:)

(2)
R = A— are universal predictions of GR, like the spectrum of linear w.

Ag_l).A(zl)

The peeling theorem supports this ansatz, which excludes ¢ = 0,1 even at
quadratic order (£ > |s|) [Lagos&Hui'22], [Geiller,Laddha,Zwikel'24].
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Conclusions

Quadratic Frequencies
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Conclusions

Quadratic Amplitudes
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» We confirmed R for (¢,,m) 2,2 x 2,2 —4,4: |R|~0.15 and
2,2x 3,355 |R| ~ 0.4 against existing NR simulations [Cheung et
al.; Mitman et al.; Zhu et al.], but we also found new modes

» Trusting GR, we reduce overfitting because of the more detailed
ringdown model (no new parameters!)

» Detection prospects of Quadratic QNMs [Berti et al. '24]:
ground detectors should see O(10)/y, while LISA ©O(100)/y

» Can we study deviations from GR?
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Thank
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Why is Kerr Hard?

Spherical Symmetry — Axial Symmetry

Can separate r,6 dependence at linear order, using Spheroidal Harmonics.

Source term is problematic. When breaking a symmetry,
S~ ﬂt)e_iwlte_iw2t7 g(COS 9)3)1(0, ¢)y2(97 ¢)
To isolate the source of a given Y, we need

/ V*(6, §)g(cos )1 (6, )V (6, 6) A

[Ma&Yang’'24] [Khera,Ma,Yang'24] [Spiers et al.’23] [Spiers '24]
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