
Quadratic Quasi-Normal Modes
of a Schwarzschild Black Hole

Bruno Bucciotti1

1with Leonardo Juliano, Adrien Kuntz and Enrico Trincherini

Bruno Bucciotti Based on Arxiv:2405.06012 and 2406.14611 1



Inspire-Merger-Ringdown

(Top) Kip Thorne; (Bottom) B. P. Abbott et al.; adapted by APS/Carin Cain
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Linear Perturbations
and Beyond

Linear Quasi-Normal Modes

▶ Small Amplitude Perturbations of the final BH metric
▶ Obey Linearized Einstein Equations
▶ Characterized by discrete set of frequencies
▶ Describe the Ringdown Signal very accurately

Where do the non-linearities go?
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Quadratic Perturbations
Detected in Numerical GR by [Cheung et al. ’23]
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Quadratic Perturbations
Detected in Numerical GR by [Cheung et al. ’23]
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Detectability by LISA claimed by [Berti et al. ’24]
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Black Hole Perturbation Theory
Metric Ansatz

Metric Perturbations h(1)µν , h(2)µν

gµν = ḡµν + ϵh(1)µν + ϵ2h(2)µν

hµν =


htt htr [ ]

hrr [ ]


2 vectors ht+,ht−
2 vectors hr+,hr−

3 tensors h+,h−,h◦

γAB =

(
1

sin2 θ

)
, Yℓ,m, DAYℓ,m, ϵAB DAYℓ,m, . . .

e−iωt, ℜ[ω] > 0, ℜ[ω] < 0

In Regge-Wheeler gauge
ht+ = hr+ = h+ = h− = 0

Even | Odd sector
7+ 3
↓ Gauge fixing

4+ 2
↓ Constraint eq.’s

1+ 1
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Black Hole Perturbation Theory
Einstein Equations

Einstein Equations in vacuum

ϵ0 G(0)
µν

[
ḡ
]
= 0 (trivial)

ϵ1 G(1)
µν

[
h(1)

]
= 0

ϵ2 G(1)
µν

[
h(2)

]
= −G(2)

µν

[
ϵh(1), ϵh(1)

]
≡ ϵ2Sµν

[
h(1),h(1)

]
Symmetries of Background
⇒ Can take eigenstates of angular momentum, frequency, and parity,
and dynamics will not mix them.
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Black Hole Perturbation Theory
Master Scalars, Linear Order

The two physical d.o.f. of the graviton are captured by master scalars

ψ+ =
2r
λ21

[
r−2h̃◦ +

2
Λ(r)

(
f2h̃rr − rf(r−2h̃◦)′

)]
ψ− =

2r
µ2

[
∂rh̃t− +

M
r2f(r)

(h̃t− − h̃r−)− ∂th̃r− −
2
r
h̃t−

]

Einstein equations reduce to the Regge-Wheeler and Zerilli equations

dψ±
dr2∗

+ ω2ψ± − V±(r)ψ± = 0, r∗ = r + ln
( r
2M
− 1

)
Knowing ψ± we can fully reconstruct the metric

hµν ←→ ψ±
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Linear Quasi-Normal Modes

Green function decomposes into [Leaver ’86]

▶ Prompt Response (high frequency/free propagation)
▶ Quasi-Normal Modes (poles)
▶ Late time tail (cut) Numerical results by [Mitman et al.’24]

QNMs are found by imposing boundary conditions

ψ ∼
r∗→+∞

A eiωr∗ , ψ ∝
r∗→−∞

e−iωr∗

whereA is the QNM amplitude.

Many techniques available: Leaver method (fully numerical), (high order) WKB,
Uniform approximations, Liouville Theory, . . .
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Linear Spectrum
ℓ n Uniform (2-nd order) 6-th order WKB
2 0 0.3854+ 0.0909i (3.1%) 0.37371+ 0.08892i (0.014%)

1 0.3590+ 0.2796i (3.1%) 0.34672+ 0.27388i (0.0089%)
2 0.3146+ 0.4868i (2.8%) 0.30005+ 0.47883i (0.2%)
3 0.2670+ 0.7146i (2.4%) 0.24551+ 0.71159i (1.2%)

1000 0.000+ 249.771i (0.06%) −
3 0 0.6075+ 0.0935i (1.3%) 0.59944+ 0.09270i (0.000049%)

1 0.5909+ 0.2837i (1.3%) 0.58264+ 0.28129i (0.00088%)
2 0.5605+ 0.4830i (1.3%) 0.55160+ 0.47906i (0.013%)
3 0.5215+ 0.6956i (1.3%) 0.51111+ 0.69049i (0.1%)
4 0.4807+ 0.9219i (1.2%) 0.46688+ 0.91799i (0.39%)
5 0.4428+ 1.1591i (1.1%) 0.42437+ 1.16253i (1.%)

Table: The quasi-normal frequencies of a Schwarzschild black hole in units where GM = 1.
[BB, Adrien Kuntz, Francesco Serra, Enrico Trincherini ’23]
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Selection Rules
for Quadratic Order Modes

Before doing any computation, let’s exploit symmetry.

Couple two linear modes of given

frequencies ω1,2, angular momenta (ℓ1,2,m1,2), parity P1,2 = 0,1
▶ cosω1t e−γ1t cosω2t e−γ2t ∝ (cos(ω1 + ω2)t + cos(ω1 − ω2)t)e−(γ1+γ2)t

▶ ℓ = |ℓ1 − ℓ2|, . . . , ℓ1 + ℓ2; m1 +m2 = m (Clebsh-Gordan coefficient)

▶ (−1)ℓ1+P1(−1)ℓ2+P2 = (−1)ℓ+P

But what are the amplitudes of the quadratic modes?
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Black Hole Perturbation Theory
Master Scalars, Quadratic Order

Similarly, defining the master scalars ψ
(2)
± using h(2)µν , they obey

dψ
(2)
±

dr2∗
+ ω2ψ

(2)
± − V±(r)ψ(2)

± = S[ψ(1)
± , ψ

(1)
± ] ← Source term

[Hui et al. ’22; Spiers,Pound,Wardell ’23]

But ψ(2)
± diverge at large r as ψ

(2)
± ∝ r2 eiωr∗ , so for them

▶ QNM boundary conditions cannot be imposed

▶ Cannot extract a finite amplitude A
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Resolution
The Good Master Scalars

Divergences due to poor choice of master scalars
[Ioka, Nakano ’07; Brizuela et al. ’09]

h(2)µν = Dµν [ψ
(2)
± ] + [divergent terms]µν

For each Parity sector, we redefine ψ
(2)
± → Ψ

(2)
±

Ψ
(2)
± = ψ

(2)
± +∆(r)ψ(1)

± ψ
(1)
± , ∆(r) = c2r2 + c1r

choosing c1, c2 to reabsorb divergences.

Ψ
(2)
± obeys RWZ equation with new source term.

Ψ
(2)
± ∼

r∗→+∞
A(2) eiωr∗ . Can impose QNM b.c. and extract A(2).
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Physical Waveform
Transverse-Traceless gauge

We can now reconstruct the metric h(2)µν in Regge-Wheeler gauge.

To extract the physical waveform, we go to asymptotically transverse-traceless
gauge and extract +,× polarizations

hTT
ab = O(r−2), hTT

a± = O(r−1), hTT
◦ = O(r0), hTT

± = O(r)

xµ → xµ + ϵ ξ(1)µ(x) + ϵ2 ξ(2)µ(x) hAB =

(
hTT
◦ + hTT

+ hTT
−

hTT
− hTT

◦ − hTT
+

)

∆h(1)µν = Lξ(1) ḡµν , ∆h(2)µν = Lξ(2) ḡµν + 1
2L

2
ξ(1)

ḡµν + Lξ(1)h
(1)
µν
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Physical Waveform
Quantifying outgoing radiation

Finally, a convenient parametrization is the Newman Penrose scalar Ψ4

Ψ4 = h+ − ih× =
M
r
∑
AℓmN e−iωℓN (r∗−t)

−2Yℓm(θ, ϕ), N = (n,±)

R ≡ A(2)

A(1)
1 A

(1)
2

are universal predictions of GR, like the spectrum of linear ω.

The peeling theorem supports this ansatz, which excludes ℓ = 0,1 even at
quadratic order (ℓ ≥ |s|) [Lagos&Hui’22], [Geiller,Laddha,Zwikel’24].
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Conclusions
Quadratic Frequencies
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Conclusions
Quadratic Amplitudes

A(1) ∼ 10%

A(2) ∼ 1%
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Conclusions

▶ We confirmed R for (ℓ,m) 2,2× 2,2→ 4,4: |R| ≃ 0.15 and
2,2× 3,3→ 5,5: |R| ≃ 0.4 against existing NR simulations [Cheung et
al.; Mitman et al.; Zhu et al.], but we also found new modes

▶ Trusting GR, we reduce overfitting because of the more detailed
ringdown model (no new parameters!)

▶ Detection prospects of Quadratic QNMs [Berti et al. ’24]:
ground detectors should see O(10)/y, while LISA O(100)/y

▶ Can we study deviations from GR?
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Thank you
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Why is Kerr Hard?

Spherical Symmetry −→ Axial Symmetry

Can separate r, θ dependence at linear order, using Spheroidal Harmonics.

Source term is problematic. When breaking a symmetry,

S ∼ ̸f(t)e−iω1te−iω2t, g(cos θ)Y1(θ, ϕ)Y2(θ, ϕ)

To isolate the source of a given Y , we need∫
Y∗(θ, ϕ)g(cos θ)Y1(θ, ϕ)Y2(θ, ϕ) dΩ

[Ma&Yang’24] [Khera,Ma,Yang’24] [Spiers et al.’23] [Spiers ’24]
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