Quadratic Quasi-Normal Modes

of a Schwarzschild Black Hole

Bruno Bucciotti¹

SCUOLA NORMALE SUPERIORE

¹with Leonardo Juliano, Adrien Kuntz and Enrico Trincherini

Inspire-Merger-Ringdown

(Top) Kip Thorne; (Bottom) B. P. Abbott et al.; adapted by APS/Carin Cain

Linear Perturbations

and Beyond

Linear Quasi-Normal Modes

- Small Amplitude Perturbations of the final BH metric
- Obey Linearized Einstein Equations
- Characterized by discrete set of frequencies
- Describe the Ringdown Signal very accurately

Where do the non-linearities go?

$$h^{(1)}$$

 $h^{(1)}$
 $h^{(1)}$

Quadratic Perturbations

Detected in Numerical GR by [Cheung et al. '23]

Quadratic Perturbations

Detected in Numerical GR by [Cheung et al. '23]

Compute Frequency and Amplitude of Quadratic Modes

Detectability by LISA claimed by [Berti et al. '24]

Metric Ansatz

Metric Perturbations $h^{(1)}_{\mu
u}, \, h^{(2)}_{\mu
u}$

$$g_{\mu
u} = ar{g}_{\mu
u} + \epsilon \, h^{(1)}_{\mu
u} + \epsilon^2 h^{(2)}_{\mu
u}$$

In Regge-Wheeler gauge $h_{t+} = h_{r+} = h_{+} = h_{-} = 0$ Even | Odd sector 7 + 3 \downarrow Gauge fixing 4 + 2 \downarrow Constraint eq.'s 1 + 1

Einstein Equations

Einstein Equations in vacuum

$$\epsilon^{0} G_{\mu\nu}^{(0)} [\bar{g}] = 0 \text{ (trivial)}$$

$$\epsilon^{1} G_{\mu\nu}^{(1)} [h^{(1)}] = 0$$

$$\epsilon^2 \, G^{(1)}_{\mu
u} [h^{(2)}] = -G^{(2)}_{\mu
u} [\epsilon \, h^{(1)}, \epsilon \, h^{(1)}] \equiv \epsilon^2 S_{\mu
u} [h^{(1)}, h^{(1)}]$$

Symmetries of Background

 \Rightarrow Can take eigenstates of angular momentum, frequency, and parity, and dynamics will not mix them.

second harmonic wave

Master Scalars, Linear Order

The two physical d.o.f. of the graviton are captured by master scalars

$$\psi_{+} = \frac{2r}{\lambda_{1}^{2}} \left[r^{-2}\tilde{h}_{\circ} + \frac{2}{\Lambda(r)} \left(f^{2}\tilde{h}_{rr} - rf(r^{-2}\tilde{h}_{\circ})' \right) \right]$$

$$\psi_{-} = \frac{2r}{\mu^{2}} \left[\partial_{r}\tilde{h}_{t-} + \frac{M}{r^{2}f(r)} (\tilde{h}_{t-} - \tilde{h}_{r-}) - \partial_{t}\tilde{h}_{r-} - \frac{2}{r}\tilde{h}_{t-} \right]$$

Einstein equations reduce to the Regge-Wheeler and Zerilli equations

$$\frac{\mathrm{d}\psi_{\pm}}{\mathrm{d}r_{*}^{2}} + \omega^{2}\psi_{\pm} - V_{\pm}(r)\psi_{\pm} = 0, \quad r_{*} = r + \ln\left(\frac{r}{2M} - 1\right)$$

Knowing ψ_\pm we can fully reconstruct the metric

$$h_{\mu\nu} \longleftrightarrow \psi_{\pm}$$

Linear Quasi-Normal Modes

Green function decomposes into

- Prompt Response (high frequency/free propagation)
- Quasi-Normal Modes (poles)
- ► Late time tail (cut)

Numerical results by [Mitman et al.'24]

QNMs are found by imposing boundary conditions

$$\psi \underset{r_* \to +\infty}{\sim} \mathcal{A} e^{i\omega r_*}, \quad \psi \underset{r_* \to -\infty}{\propto} e^{-i\omega r_*}$$

where ${\boldsymbol{\mathcal{A}}}$ is the QNM amplitude.

Many techniques available: Leaver method (fully numerical), (high order) WKB, Uniform approximations, Liouville Theory, ...

[Leaver '86]

Linear Spectrum

l	n	Uniform (2-nd order)	6-th order WKB
2	0	0.3854 + 0.0909 <i>i</i> (3.1%)	0.37371 + 0.08892i (0.014%)
	1	0.3590 + 0.2796i (3.1%)	0.34672 + 0.27388i (0.0089%)
	2	0.3146 + 0.4868i (2.8%)	0.30005 + 0.47883i(0.2%)
	3	0.2670 + 0.7146 <i>i</i> (2.4%)	0.24551 + 0.71159 <i>i</i> (1.2%)
	1000	0.000 + 249.771i (0.06%)	—
3	0	0.6075 + 0.0935 <i>i</i> (1.3%)	0.59944 + 0.09270i(0.000049%)
	1	0.5909 + 0.2837 <i>i</i> (1.3%)	0.58264 + 0.28129i(0.00088%)
	2	0.5605 + 0.4830 <i>i</i> (1.3%)	0.55160 + 0.47906i (0.013%)
	3	0.5215 + 0.6956 <i>i</i> (1.3%)	0.51111 + 0.69049i (0.1%)
	4	0.4807 + 0.9219 <i>i</i> (1.2%)	0.46688 + 0.91799 <i>i</i> (0.39%)
	5	0.4428 + 1.1591 <i>i</i> (1.1%)	0.42437 + 1.16253i (1.%)

Table: The quasi-normal frequencies of a Schwarzschild black hole in units where GM = 1.

[BB, Adrien Kuntz, Francesco Serra, Enrico Trincherini '23]

for Quadratic Order Modes

Before doing any computation, let's exploit symmetry.

Couple two linear modes of given

frequencies $\omega_{1,2}$, angular momenta ($\ell_{1,2}, m_{1,2}$), parity $P_{1,2} = 0, 1$

• $\cos \omega_1 t e^{-\gamma_1 t} \cos \omega_2 t e^{-\gamma_2 t} \propto (\cos(\omega_1 + \omega_2)t + \cos(\omega_1 - \omega_2)t)e^{-(\gamma_1 + \gamma_2)t}$

•
$$\ell = |\ell_1 - \ell_2|, \dots, \ell_1 + \ell_2; m_1 + m_2 = m$$
 (Clebsh-Gordan coefficient)

• $(-1)^{\ell_1+P_1}(-1)^{\ell_2+P_2} = (-1)^{\ell+P_2}$

But what are the **amplitudes** of the quadratic modes?

Master Scalars, Quadratic Order

Similarly, defining the master scalars $\psi^{(2)}_{\pm}$ using $h^{(2)}_{\mu
u}$, they obey

$$\frac{\mathrm{d}\psi_{\pm}^{(2)}}{\mathrm{d}r_{*}^{2}} + \omega^{2}\psi_{\pm}^{(2)} - V_{\pm}(r)\psi_{\pm}^{(2)} = S[\psi_{\pm}^{(1)},\psi_{\pm}^{(1)}] \leftarrow \text{Source term}$$

[Hui et al. '22; Spiers, Pound, Wardell '23]

But $\psi^{(2)}_{\pm}$ diverge at large r as $\psi^{(2)}_{\pm} \propto r^2 \, e^{i\omega r_*}$, so for them

- QNM boundary conditions cannot be imposed
- \blacktriangleright Cannot extract a finite amplitude \mathcal{A}

Resolution

The Good Master Scalars

Divergences due to poor choice of master scalars

[Ioka, Nakano '07; Brizuela et al. '09]

$$h^{(2)}_{\mu
u} = \mathcal{D}_{\mu
u}[\psi^{(2)}_{\pm}] + [\text{divergent terms}]_{\mu
u}$$

Resolution

The Good Master Scalars

Divergences due to poor choice of master scalars

[Ioka, Nakano '07; Brizuela et al. '09]

 $h^{(2)}_{\mu
u} = \mathcal{D}_{\mu
u}[\psi^{(2)}_{\pm}] + [ext{divergent terms}]_{\mu
u}$

For each Parity sector, we redefine $\psi^{(2)}_{\pm}
ightarrow \Psi^{(2)}_{\pm}$

$$\Psi_{\pm}^{(2)} = \psi_{\pm}^{(2)} + \Delta(r)\psi_{\pm}^{(1)}\psi_{\pm}^{(1)}, \quad \Delta(r) = c_2r^2 + c_1r$$

choosing c_1 , c_2 to reabsorb divergences.

$$\Psi^{(2)}_{\pm}$$
 obeys RWZ equation with new source term.
 $\Psi^{(2)}_{\pm} \underset{r_* \to +\infty}{\sim} \mathcal{A}^{(2)} e^{i\omega r_*}$. Can impose QNM b.c. and extract $\mathcal{A}^{(2)}$.

Physical Waveform

Transverse-Traceless gauge

We can now reconstruct the metric $h^{(2)}_{\mu\nu}$ in Regge-Wheeler gauge.

To extract the physical waveform, we go to asymptotically transverse-traceless gauge and extract $+, \times$ polarizations

$$h_{ab}^{TT} = \mathcal{O}(r^{-2}), \ h_{a\pm}^{TT} = \mathcal{O}(r^{-1}), \ h_{\circ}^{TT} = \mathcal{O}(r^{0}), \ h_{\pm}^{TT} = \mathcal{O}(r)$$

$$x^{\mu} o x^{\mu} + \epsilon \, \xi^{(1)\mu}(x) + \epsilon^2 \, \xi^{(2)\mu}(x) \qquad \qquad h_{AB} = egin{pmatrix} h_{\circ}^{TT} + h_{+}^{TT} & h_{-}^{TT} \ h_{-}^{TT} & h_{\circ}^{TT} - h_{+}^{TT} \end{pmatrix}$$

$$\Delta h^{(1)}_{\mu\nu} = \mathcal{L}_{\xi^{(1)}} \bar{g}_{\mu\nu}, \qquad \Delta h^{(2)}_{\mu\nu} = \mathcal{L}_{\xi^{(2)}} \bar{g}_{\mu\nu} + \frac{1}{2} \mathcal{L}^2_{\xi^{(1)}} \bar{g}_{\mu\nu} + \mathcal{L}_{\xi^{(1)}} h^{(1)}_{\mu\nu}$$

Physical Waveform

Quantifying outgoing radiation

Finally, a convenient parametrization is the Newman Penrose scalar Ψ_4

$$\Psi_{4} = \mathfrak{h}_{+} - i\mathfrak{h}_{\times} = \frac{M}{r} \sum \mathcal{A}_{\ell m \mathcal{N}} e^{-i\omega_{\ell \mathcal{N}}(r_{*}-t)} -_{2} Y^{\ell m}(\theta,\phi), \quad \mathcal{N} = (n,\pm)$$

 $\mathcal{R} \equiv \frac{\mathcal{A}^{(2)}}{\mathcal{A}_1^{(1)}\mathcal{A}_2^{(1)}}$ are universal predictions of GR, like the spectrum of linear ω .

The peeling theorem supports this ansatz, which excludes $\ell = 0, 1$ even at quadratic order ($\ell \ge |s|$) [Lagos&Hui'22], [Geiller,Laddha,Zwikel'24].

Conclusions

Quadratic Frequencies

Conclusions

Quadratic Amplitudes

Conclusions

- ▶ We confirmed \mathcal{R} for (ℓ, m) 2, 2 × 2, 2 → 4, 4: $|\mathcal{R}| \simeq 0.15$ and 2, 2 × 3, 3 → 5, 5: $|\mathcal{R}| \simeq 0.4$ against existing NR simulations [Cheung et al.; Mitman et al.; Zhu et al.], but we also found new modes
- Trusting GR, we reduce overfitting because of the more detailed ringdown model (no new parameters!)
- Detection prospects of Quadratic QNMs [Berti et al. '24]: ground detectors should see O(10)/y, while LISA O(100)/y
- ► Can we study deviations from GR?

Thank you

Why is Kerr Hard?

Spherical Symmetry \longrightarrow Axial Symmetry

Can separate r, θ dependence at linear order, using Spheroidal Harmonics.

Source term is problematic. When breaking a symmetry,

$$S \sim f(t)e^{-i\omega_1 t}e^{-i\omega_2 t}, \qquad g(\cos\theta)\mathcal{Y}_1(\theta,\phi)\mathcal{Y}_2(\theta,\phi)$$

To isolate the source of a given \mathcal{Y} , we need

$$\int \mathcal{Y}^*(\theta,\phi) g(\cos\theta) \mathcal{Y}_1(\theta,\phi) \mathcal{Y}_2(\theta,\phi) \, \mathrm{d}\Omega$$

[Ma&Yang'24] [Khera,Ma,Yang'24]

[Spiers et al.'23] [Spiers '24]