ANDREA DI LECCE 18-12-24

Composite Higgs and Dark Matter Research Project TPPC

Advisors

Dario Buttazzo - Paolo Panci - Roberto Franceschini

Table of contents:

• Motivation:

•Why Composite Higgs? •Why Dark Matter? •Why Dark Matter in Composite Higgs?

- Preliminary results
- Future Directions

• Motivation:

•Why Composite Higgs?

- Naturalness of the Higgs mass:
- New physics related to the Higgs boson (1-10)TeV scale.
- •Composite Higgs:
- •New massless degrees of freedom: **techniquarks**
- •New gauge group, technicolor
- •Strong coupling scale $\Lambda = (1 10)TeV$

ANDREA DI LECCE 18-12-24

Research Project: Dark Matter in Composite Higgs

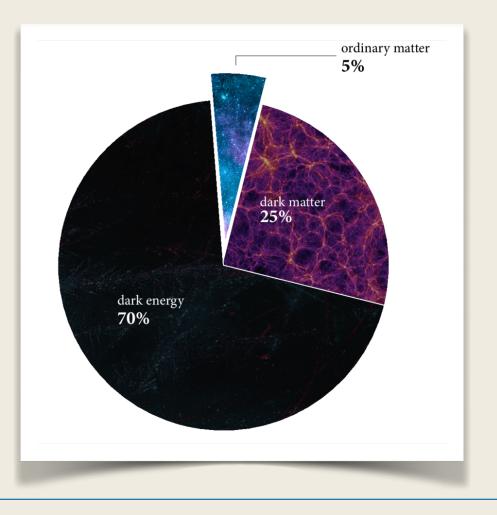
• Motivation:

•Why Dark Matter?

- Observational Evidence
- Curve velocities of stars around a galaxy
- Virial Theorem
- Gravitational Lensing
- oBullet Cluster
- Theoretical Evidence

Hot Big Bang Puzzle for structure formation

- •What do they tell us?
- DM does not interact with light
- It is very unlikely to carry colour charge
- Stable on Cosmological timescales



• Motivation:

	Field	SU(3)	SU(2)	U(1)_Y	Q=Y+T3L
_	DM	1	n	Y	0

•Stability implies symmetry

olt is usually imposed a \mathbb{Z}_2 symmetry under which:

$$P \cdot \chi = -\chi$$

so that all the operators with an odd number of DM are forbidden.

ANDREA DI LECCE 18-12-24

 $P \cdot SM = SM$

• Motivation:

•Why Dark Matter in Composite Higgs?

- Techniquarks are supposed to form many bound states charged under Weak Group.

• Question:

- Could the new physics related to Higgs boson also be connected to the Dark Matter?
- What kind of particle should it be?

ANDREA DI LECCE 18-12-24

• Thermal Masses for a Weakly Interacting Massive Particle (WIMP) are of the order of the scale Λ .

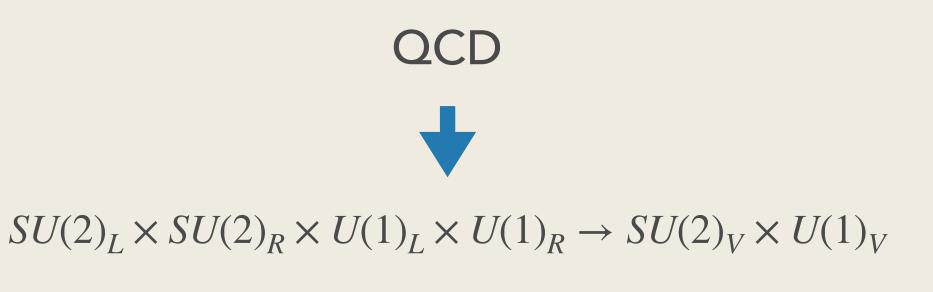
• Could the \mathbb{Z}_2 symmetry that ensures the DM stability be explained by the Composite Higgs symmetry?

- Preliminary results:
- Are the \mathbb{Z}_2 properties of transformation needed in order to have a stable Dark Matter?
- Can we combine the Lorentz symmetries and a \mathbb{Z}_2 to forbid operators with an odd number of DM?

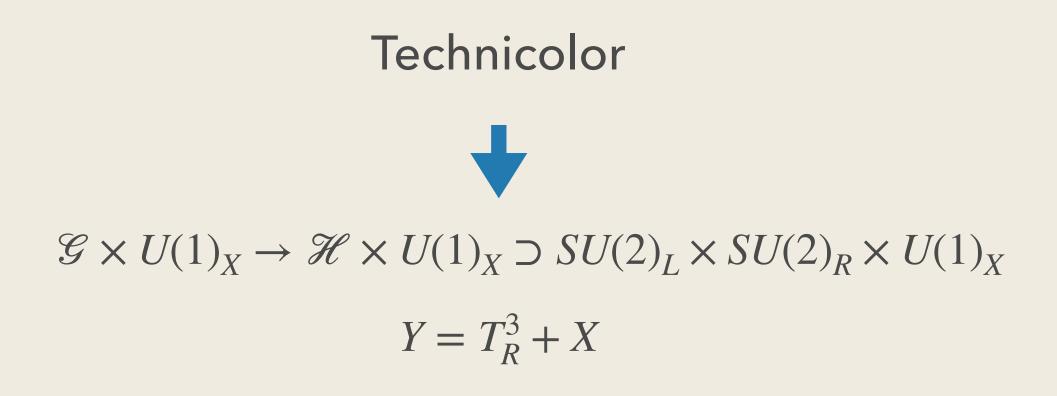
Scalar case	DM	SM fermions	Fermionic case	DM	SM fermions
\mathbb{Z}_2	1	1	\mathbb{Z}_2	1	1
	1	-1		1	-1
	-1	1		-1	1
	-1	-1		-1	-1

- What about \mathbb{Z}_2 for scalars?
- Scalar must be even

- Preliminary results:
- Where does this \mathbb{Z}_2 symmetry come from?
- What is the quality of this symmetry?
- Can it be embedded in a symmetry belonging to the Composite Higgs itself?
- Composite Higgs symmetries:



• Goldstone Bosons $\in \mathcal{G}/H$



- Preliminary results:
- Could $U(1)_X$ work as a \mathbb{Z}_2 ?

$$U(\alpha)_X \cdot \varphi_X = e^{i\alpha X} \varphi_X$$

• If we suppose X to be integer then, depending on wether X is even or odd:

$$U(\pi)_{2}$$

- $U(1)_X$ conservation implies a \mathbb{Z}_2 symmetry
- Is it exactly conserved?
- If it is an accidental global symmetry of the strong sector it is broken by the SM;
- If it is gauged there would introduce an other gauge boson
- \circ the only possibility is that it is spontaneously broken, by a scalar field with an even X charge.

$$U(\pi)_X \cdot \varphi_X = e^{i\pi X} \varphi_X$$

 $\varphi_X \cdot \varphi_X = \pm \varphi_X$

• When the charges are not integers, they can be rescaled to ensure they all become integer values!

• Preliminary results:

° Can we apply this mechanism to $U(1)_Y$ in the SM+DM framework?

Field	$U(1)_Y$
	-1/2
e_R	-1
q_l	1/6
u_R	2/3
d_R	-1/3
H	1/2
χ	1/n

SM+DM, Y charges

• But

 $Q = T_L^3 + Y, \ Q(DM) = 0$

$4, Y \rightarrow$	12 <i>Y</i>

n =

Field	$U(1)_Y$	$\mathbb{Z}_2 \subset U(1)_Y$
	-6	+
e_R	-12	+
q_l	2	+
u_R	8	+
d_R	-4	+
H	6	+
χ	1	-

SM+DM, Y charges, for n=4

$$n_{max} = 2$$

• Preliminary results:

•We can focus on $SU(2)_L \times SU(2)_R \times U(1)_X$:

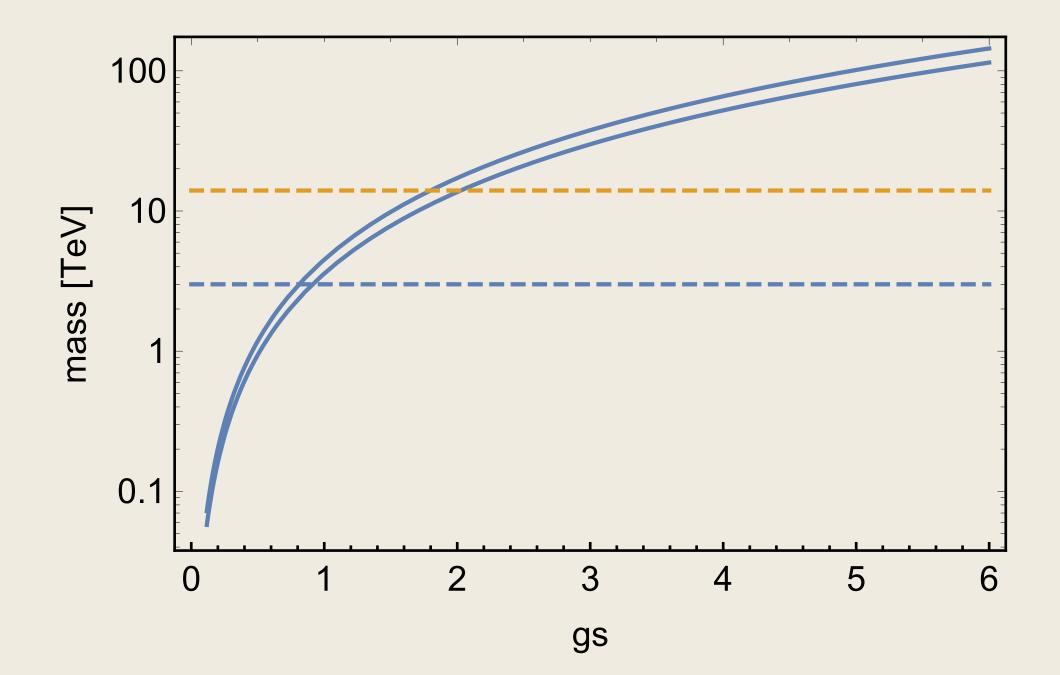
Tabella 5: Doublet: elementary fields charged under $SU(2)_R$.						
Field	$SU(2)_L imes SU(2)_R$	T_R	$U(1)_X$	\mathbb{Z}_2'	\mathcal{L}_{mix}	\mathcal{L}_{mass}
l_L	(2,1)	0	-1/2	-1		
L	(2,1)	0	-1/2		$\overline{l}_L L$	
l_R	(1, 2)	$\pm 1/2$	-1/2	-1		
E_R	(1, 2)	$\pm 1/2$	-1/2		$\bar{l}_R E_R = \bar{\nu}_R E_R^u + \bar{e}_R E_R^d$	$E_R ar{L} H$
q_L	(2,1)	0	1/6	-1		
Q_L	(2,1)	0	1/6		$ar{q}_L Q_L$	
q_R	(1,2)	$\pm 1/2$	1/6	-1		
Q_R	(1,2)	$\pm 1/2$	1/6		$ar{q}_R Q_R = ar{u}_R Q_R^u + ar{d}_R Q_R^d$	$U_R H ar Q_L$
H	(2,2)	1/2	0	+1		
H_1	(1, 3)	0	0	+1		
H_2	(1,3)	1	-1	+1		
χ_{f}	(3,1)	0	0	+1		
χ_s	(3,2)	-1/2	1/2	-1		
\mathbb{X}_{f}	(3,1)	0	0	+1		
\mathbb{X}_s	(3,2)	-1/2	1/2	-1		

- Future direction:
- Phenomenological Consequences:
- Thermal mass computation
- Collider signatures
- BBN phenomenology

)
•	
G	

Thank you for your attention

DM mass: (3,1) vs (5,1)



DM mass: (3,2) vs (5,2)

