DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation

Implications of DESI BAO measurements

Alessio Notari

Universitat de Barcelona (on leave at Galileo Galilei Institute & INFN Florence)

December 2024

Based on:
I.Allali, AN, F.Rompineve 2404.15220
AN, M. Redi, A. Tesi, JCAP 11 (2024) 025
AN, M. Redi, A. Tesi, e-Print: 2411.11685
I. Allali, AN, e-Print: 2406.14554, JCAP (2024)

Table of Contents

DESI BAO

Dark Energy DES5Y Supernova

U Tamaian

- 1 DESI BAO
 - Dark EnergyDES5Y Supernovae
- $3 H_0$ Tension
- 4 Dark Radiation

Primordial plasma has overdensities and underdensities

DESI BAO

Dark Energy DES5Y Superno

Tension

Primordial plasma has overdensities and underdensities

Gravity tries to compress the fluid in potential wells.

Fluid pressure resists compression

- DESI BAO
- Dark Energy
 DES5Y Supernova
- H₀ Tension
- Dark Radiation

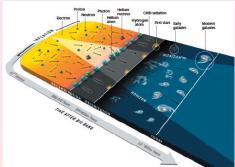
Primordial plasma has overdensities and underdensities

• Gravity tries to compress the fluid in potential wells.

ullet Fluid pressure resists compression o acoustic oscillations

DESI BAO

Dark Energy
DES5Y Supernova


H₀ Tension

DESI BAO

Dark Energy DES5Y Supernova

H₀ Tension

- Primordial plasma has overdensities and underdensities
- Gravity tries to compress the fluid in potential wells.
- ullet Fluid pressure resists compression o acoustic oscillations
- Oscillations are frozen in when hydrogen forms (recombination): CMB photons emitted

CMB fluctuations

DESI BAO

Dark Energy
DES5Y Supernova

Ho Tension

Dark

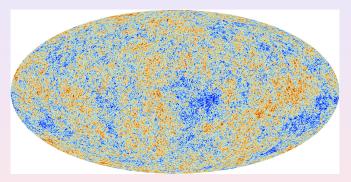


Figure: Credit: ESA and the Planck Collaboration

CMB fluctuations

DESI BAO

Dark Energy
DES5Y Supernova

Ho Tension

Dark

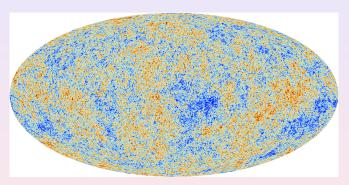


Figure: Credit: ESA and the Planck Collaboration

• Preferred angular scale of $\theta_{\rm peak} \approx 1^{\circ}$

Sound horizon at CMB

DESI BAO

Dark Energy DES5Y Supernova

H∩ Tension

David

 Sound horizon at decoupling r_d, length scale imprinted in CMB:

Sound horizon at CMB

DESI BAO

Dark Energy DES5Y Supernova

*H*_∩ Tension

Dark Radiation Sound horizon at decoupling r_d, length scale imprinted in CMB: distance that a sound wave can travel from big bang until decoupling:

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

($H = \text{Hubble parameter}, c_s \approx 1/3 \text{ plasma sound speed}$)

Sound horizon at CMB

DESI BAO

Dark Energy DES5Y Supernova

 H_0 Tension

Dark Radiation Sound horizon at decoupling r_d, length scale imprinted in CMB: distance that a sound wave can travel from big bang until decoupling:

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

($H = \text{Hubble parameter}, c_s \approx 1/3 \text{ plasma sound speed}$)

ullet "Standard ruler" of early universe, length scale stretched to ~ 150 Mpc today

Sound horizon in CMB

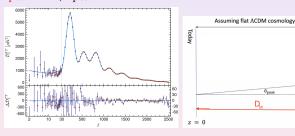
DESI BAO

Dark Energy
DES5Y Supernov.

H₀ Tension

Dark

• Length scale r_d corresponds to angular scale in CMB $\theta_{
m peak} \sim 1/\ell_{
m peak}$


Sound horizon in CMB

DESI BAO

Dark Energy
DES5Y Supernov

H₀ Tension

Dark Radiation • Length scale r_d corresponds to angular scale in CMB $\theta_{\rm peak} \sim 1/\ell_{\rm peak}$

• Angular scale $\theta_{\rm peak} \approx 1^{\circ} \propto \frac{r_d}{D_M(z_{\rm decoupling})}$ $(D_M(z) \equiv \int_0^z \frac{dz'}{H(z')}$ "transverse distance" from observer to decoupling)

Recombination

CMB $(z \sim 1090)$

Sound horizon in matter distribution

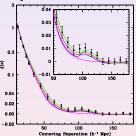
DESI BAO

Dark Energy
DES5Y Supernova

H₀ Tension

Dark

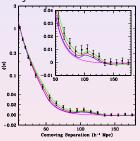
- Same sound horizion scale r_d imprinted also in the galaxy distribution at late times
- "Standard ruler" visible also in galaxy correlations
- Baryon Acoustic Oscillations (BAO)


• Galaxies at redshift $z \approx O(1)$, observe preferred separation $\Delta \theta$

DESI BAO

Dark Energy DES5Y Supernov

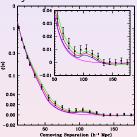
I∩ Tensior


- Galaxies at redshift $z \approx O(1)$, observe preferred separation $\Delta \theta$
- BAO first detected by SDSS: Eisenstein et al '05

- DESI BAO
- Dark Energy
- H₀ Tension
- Dark Radiation

• Galaxies at redshift $z \approx O(1)$, observe preferred separation $\Delta \theta$

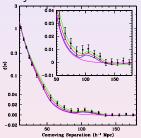
BAO first detected by SDSS: Eisenstein et al '05


 \bullet $\Delta\theta$

DESI BAO

H₀ Tension

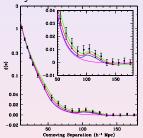
Dark Radiation • Galaxies at redshift z pprox O(1), observe preferred separation $\Delta heta$


• BAO first detected by SDSS: Eisenstein et al '05

DESI BAO

• Galaxies at redshift $z \approx O(1)$, observe preferred separation $\Delta \theta$

BAO first detected by SDSS: Eisenstein et al '05

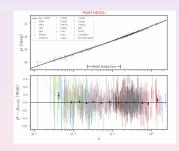

- Transverse comoving distance $D_M(z) = \int_0^z \frac{dz'}{H(z')}$

DESI BAO

• Galaxies at redshift $z \approx O(1)$, observe preferred separation $\Delta \theta$

BAO first detected by SDSS: Eisenstein et al '05

- Transverse comoving distance $D_M(z) = \int_0^z \frac{dz'}{H(z')}$
- Given a cosmological model $\implies r_d$ \implies BAO+CMB measure Distance D_M vs Redshift (z)
- Constrains H(z)

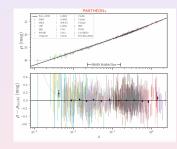


DESI BAO

Dark Energy DES5Y Supernova

H₀ Tension

Dark

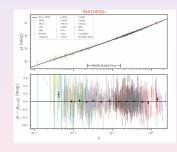

- Supernovae also measure Distance-redshift relation
- Observed luminosity vs intrinsic luminosity

DESI BAO

Dark Energy DES5Y Supernova

H₀ Tension

Dark

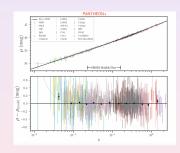


- Supernovae also measure Distance-redshift relation
- Observed luminosity vs intrinsic luminosity
- Assuming all Type Ia SN have known intrinsic luminosity (standardized candles)

DESI BAO

Dark Energy DES5Y Supernova

H₀ Tension

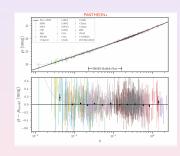


- Supernovae also measure Distance-redshift relation
- Observed luminosity vs intrinsic luminosity
- Assuming all Type Ia SN have known intrinsic luminosity (standardized candles)
- $D_L = (1 + z)D_M$

DESI BAO

Dark Energy DES5Y Supernova

H₀ Tension



- Supernovae also measure Distance-redshift relation
- Observed luminosity vs intrinsic luminosity
- Assuming all Type Ia SN have known intrinsic luminosity (standardized candles)
- $D_L = (1+z)D_M$
- "Pantheon+", DESYR5 datasets only measures relative distances: $\mu \equiv 5 \log_{10} D_L + c$ (uncalibrated)
- The constant c contains both H₀ and intrinsic luminosity

DESI BAO

Dark Energy
DES5Y Supernova

H₀ Tension

- Supernovae also measure Distance-redshift relation
- Observed luminosity vs intrinsic luminosity
- Assuming all Type Ia SN have known intrinsic luminosity (standardized candles)
- $D_L = (1+z)D_M$
- "Pantheon+", DESYR5 datasets only measures relative distances: $\mu \equiv 5 \log_{10} D_L + c$ (uncalibrated)
- The constant c contains both H₀ and intrinsic luminosity
- Only if Intrinsic luminosity known (calibration) → H₀ is measured

ACDM Concordance Model

BAO + CMB + uncalibrated Supernovae: establish the "Standard" ACDM cosmological model:

DESI BAO

Dark Energy

H₀ Tension

ACDM Concordance Model

BAO + CMB + uncalibrated Supernovae: establish the "Standard" ACDM cosmological model:

- Consistent with spatial flatness
- Requires Dark matter + Dark Energy

DESI BAO

Dark Energy

Ho Tension

ACDM Concordance Model

BAO + CMB + uncalibrated Supernovae: establish the "Standard" ACDM cosmological model:

- Consistent with spatial flatness
- Requires Dark matter + Dark Energy

DESI BAO

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Energy Spectroscopic Instrument (DESI)

DESI BAO

Dark Energy DES5Y Supernova

Ho Tension

Dark Radiation

- ullet Measures BAO in galaxies, quasars, and Lyman-lpha forest
- Redshift range 0.1 < z < 4.2
- → Measure expansion history at highest precision yet

(Adame et al 24 (DESI III, VI), Abareshi et al 22)

Dark Energy Spectroscopic Instrument (DESI)

DESI BAO

Dark Energy DES5Y Supernova

Ho Tension

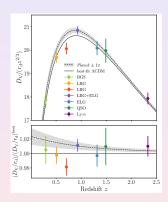
Dark Radiation ullet Measures BAO in galaxies, quasars, and Lyman-lpha forest

- Redshift range 0.1 < z < 4.2
- → Measure expansion history at highest precision yet

With respect to previous BAO measurements (6dFGS, BOSS, eBOSS, SDSS, WiggleZ)

- ullet 40 million target galaxies and quasars (vs. $\sim 3-4$ million)
- ullet Aim to increase precision on distance 5-10 imes
- Extended redshift range

(Adame et al 24 (DESI III, VI), Abareshi et al 22)

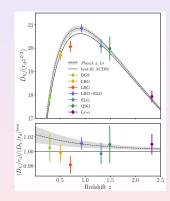


Distance-redshift from DESI

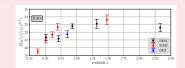
DESI BAO

Dark Energy
DES5Y Supernova

*H*₀ Tension



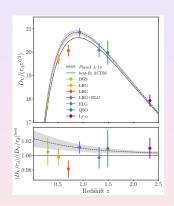
Distance-redshift from DESI

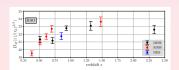

DESI BAO

Dark Energy
DES5Y Supernova

H₀ Tension

- Data point at $z \sim 0.7$ low.
- Discrepancy at $\sim 3\sigma$ level with old BAO (SDSS BOSS)


Distance-redshift from DESI


DESI BAO

Dark Energy
DES5Y Supernova

 H_0 Tension

Dark Radiatior

- Data point at $z \sim 0.7$ low.
- Discrepancy at $\sim 3\sigma$ level with old BAO (SDSS BOSS)
- Consistent with another 2024 BAO measurement at z = 0.85 (DES)

Abbott et al. PRD 2024

(from DESI, Adame et al 24)

Extract Cosmological Parameters

DESI BAO

Dark Energy

DES5Y Supernova

H₀ Tension

Dark

Datasets considered ('baseline'):

- Planck18: CMB (+ lensing) from Planck (Aghanim et al 18)
- Pantheon+ (Scolnic et al 22) or DESYR5 Uncalibrated Supernovae
- DESI: BAO from DESI 2024 DR1 (Adame et al (DESI VI) 24)

Extract Cosmological Parameters

DESI BAO

Dark Energy DES5Y Supernova

*H*₀ Tension

Dark

Datasets considered ('baseline'):

- Planck18: CMB (+ lensing) from Planck (Aghanim et al 18)
- Pantheon+ (Scolnic et al 22) or DESYR5 Uncalibrated Supernovae
- DESI: BAO from DESI 2024 DR1 (Adame et al (DESI VI) 24)

 +H₀: local SH0ES measurement of Calibrated SNIa (Riess et al 22) (combined consistently with Pantheon)

Extract Cosmological Parameters

DESI BAO

Dark Energy DES5Y Supernova

*H*₀ Tension

Dark

Datasets considered ('baseline'):

- Planck18: CMB (+ lensing) from Planck (Aghanim et al 18)
- Pantheon+ (Scolnic et al 22) or DESYR5 Uncalibrated Supernovae
- DESI: BAO from DESI 2024 DR1 (Adame et al (DESI VI) 24)

 +H₀: local SH0ES measurement of Calibrated SNIa (Riess et al 22) (combined consistently with Pantheon)

DESI BAO

Dark Energy
DES5Y Supernova

d∩ Tensio

DESI BAO

Dark Energy DES5Y Supernova

h Tension

Dark Radiation • Without SH0ES:

DESI BAO

Dark Energy DES5Y Supernova

H₀ Tension

Dark Radiation

Without SH0ES:

New DESI 2024+SNe+CMB data seems to prefer time-varying Dark Energy (not Cosmological Constant!)

(Adame et al (DESI VI) 24)

DESI BAO

Dark Energy
DES5Y Supernova

H₀ Tension

Dark

Without SH0ES:

New DESI 2024+SNe+CMB data seems to prefer time-varying Dark Energy (not Cosmological Constant!)

(Adame et al (DESI VI) 24)

• With SH0ES: which model has lowest tension?

DESI BAO

Dark Energy DES5Y Supernova

H₀ Tension

Dark Padiation

Without SH0ES:

New DESI 2024+SNe+CMB data seems to prefer time-varying Dark Energy (not Cosmological Constant!)

(Adame et al (DESI VI) 24)

- With SH0ES: which model has lowest tension?
 - New physics at Early Time: Dark Radiation (Allali, AN, Rompineve arXiv:2404.15220)

Table of Contents

DESI BAC

Dark Energy
DES5Y Supernova

Ho Tension

Dark

- DESI BAO
- Dark EnergyDES5Y Supernovae
- \bigcirc H_0 Tension
- 4 Dark Radiation

Cosmology without SH0ES: varying Dark Energy?

DESI BAC

Dark Energy
DES5Y Supernova

H₁ Tension

Dark Radiation A generic fluid evolves as:

$$\dot{\rho} + 3H(1+w)\rho = 0$$

• $w \equiv \frac{p}{\rho}$ equation of state (w = 0 Matter, $w = \frac{1}{3}$ radiation)

Cosmology without SH0ES: varying Dark Energy?

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation • A generic fluid evolves as:

$$\dot{\rho} + 3H(1+w)\rho = 0$$

- $w \equiv \frac{p}{\rho}$ equation of state (w = 0 Matter, $w = \frac{1}{3}$ radiation)
- Standard particle physics field theory $w \ge -1$ (ρ is diluted by expansion)
- Cosmological constant w = -1 (not diluted by expansion)

Cosmology without SH0ES: varying Dark Energy?

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation • A generic fluid evolves as:

$$\dot{\rho} + 3H(1+w)\rho = 0$$

- $w \equiv \frac{P}{\rho}$ equation of state (w = 0 Matter, $w = \frac{1}{3}$ radiation)
- Standard particle physics field theory $w \ge -1$ (ρ is diluted by expansion)
- Cosmological constant w = -1 (not diluted by expansion)
- But data seem to favor w < -1! ((Adame et al (DESI VI) 24)) (ρ grows with expansion?!)

• 'Standard' Parameterization $w = w_0 + (1 - a)w_a$ (Chevallier-Polarski-Linder, "CPL", (Adame et al (DESI VI) 24))

DESI BAC

Dark Energy

H₀ Tension

DESI BAC

Dark Energy
DES5Y Supernova

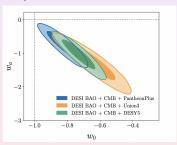
H₀ Tension

Dark

• 'Standard' Parameterization $w = w_0 + (1 - a)w_a$ (Chevallier-Polarski-Linder, "CPL", (Adame et al (DESI VI) 24))

• Today (a = 1): $w = w_0$, in the past $(a \to 0)$: $w_i = w_0 + w_a$

DESI BAC


Dark Energy
DES5Y Supernova

H₀ Tension

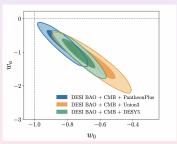
Dark

• 'Standard' Parameterization $w = w_0 + (1 - a)w_a$ (Chevallier-Polarski-Linder, "CPL", (Adame et al (DESI VI) 24))

• Today (a = 1): $w = w_0$, in the past $(a \to 0)$: $w_i = w_0 + w_a$

• Λ CDM disfavored. Highest evidence with DES5Y Supernovae (3.9 σ)

DESI BAC


Dark Energy
DES5Y Supernova

H₀ Tension

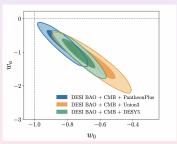
Dark

• 'Standard' Parameterization $w = w_0 + (1 - a)w_a$ (Chevallier-Polarski-Linder, "CPL", (Adame et al (DESI VI) 24))

• Today (a = 1): $w = w_0$, in the past $(a \to 0)$: $w_i = w_0 + w_a$

- Λ CDM disfavored. Highest evidence with DES5Y Supernovae (3.9σ)
- Evidence for w < -1 in the past?

DESI BAC


Dark Energy
DES5Y Supernova

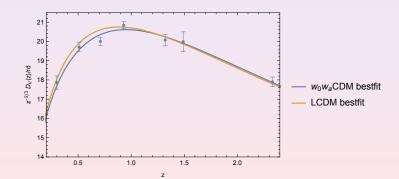
H₀ Tension

Dark

• 'Standard' Parameterization $w = w_0 + (1 - a)w_a$ (Chevallier-Polarski-Linder, "CPL", (Adame et al (DESI VI) 24))

• Today (a = 1): $w = w_0$, in the past $(a \to 0)$: $w_i = w_0 + w_a$

- Λ CDM disfavored. Highest evidence with DES5Y Supernovae (3.9σ)
- Evidence for w < -1 in the past?

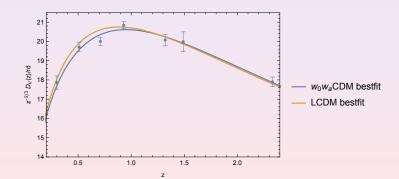

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark

• BAO fit:


DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark

• BAO fit:

DESI BAC

Dark Energy
DES5Y Supernova

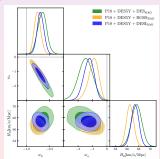
do Tension

Dark Radiation • Preference for varying Dark Energy not present in 'old' BAO (BOSS) (only $\sim 2\sigma$)

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension


- Preference for varying Dark Energy not present in 'old' BAO (BOSS) (only $\sim 2\sigma$)
- But we replaced DESI BAO with other BAO measurement (DES 2024): (AN, Redi & Tesi 2024)
- Still 3σ evidence

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

- Preference for varying Dark Energy not present in 'old' BAO (BOSS) (only $\sim 2\sigma$)
- But we replaced DESI BAO with other BAO measurement (DES 2024): (AN, Redi & Tesi 2024)
- Still 3σ evidence

Healthy fit?

• We searched for simple "healthy" fluids (w > -1 always)

(AN, M. Redi, A. Tesi, 2406.08459, astro-ph.CO)

DESI BAC

Dark Energy
DES5Y Supernova

Tension

Healthy fit?

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

- We searched for simple "healthy" fluids (w > -1 always) (AN, M. Redi, A. Tesi, 2406.08459, astro-ph.CO)
- With same Taylor expansion, linear around present epoch

Healthy fit?

DESI BAC

Dark Energy
DES5Y Supernovae

.. _ .

- We searched for simple "healthy" fluids (w > -1 always) (AN, M. Redi, A. Tesi, 2406.08459, astro-ph.CO)
- With same Taylor expansion, linear around present epoch

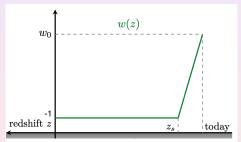


Figure: "Ramp" model

Dark Energy

P18+DESI BAO+ DES5Y Supernovae:

$w_0 w_a CDM$	w ₀	Wa	H_0 [km/s/Mpc]	$\Delta \chi^2$
	$-0.71^{+0.069}_{-0.073}$	$-1.13^{+0.35}_{-0.29}$	$67.43^{+0.65}_{-0.67}$	-18

Ra	amp	w_0	Z_S	H_0 [km/s/Mpc]	$\Delta \chi^2$
		$-0.53^{+0.16}_{-0.36}$	$0.25^{+0.031}_{-0.21}$	$66.15^{+0.63}_{-0.65}$	-12

where: $\Delta \chi^2 \equiv \chi^2_{\rm model} - \chi^2_{\Lambda {\rm CDM}}$.

Dark Energy

P18+DESI BAO+ DES5Y Supernovae:

$w_0 w_a CDM$	w_0	Wa	H_0 [km/s/Mpc]	$\Delta \chi^2$
	$-0.71^{+0.069}_{-0.073}$	$-1.13^{+0.35}_{-0.29}$	$67.43^{+0.65}_{-0.67}$	-18

Ra	amp	w_0	Z_S	H_0 [km/s/Mpc]	$\Delta \chi^2$
		$-0.53^{+0.16}_{-0.36}$	$0.25^{+0.031}_{-0.21}$	$66.15^{+0.63}_{-0.65}$	-12

where:
$$\Delta \chi^2 \equiv \chi^2_{\rm model} - \chi^2_{\Lambda {\rm CDM}}.$$

• $\triangle AIC \equiv \triangle \chi^2 + 2\triangle p$, Akaike Information Criterion, penalized by extra parameters

P18+DESI BAO+ DES5Y Supernovae:

Ra	amp	w_0	Z_S	H_0 [km/s/Mpc]	$\Delta \chi^2$
		$-0.53^{+0.16}_{-0.36}$	$0.25^{+0.031}_{-0.21}$	$66.15^{+0.63}_{-0.65}$	-12

where: $\Delta\chi^2 \equiv \chi^2_{\rm model} - \chi^2_{\Lambda {\rm CDM}}.$

- $\triangle AIC \equiv \triangle \chi^2 + 2\triangle p$, Akaike Information Criterion, penalized by extra parameters
- $\Delta AIC|_{RAMP} = -8$ vs. ΛCDM

△ AIC Range	Interpretation
$\Delta AIC \leq 2$	Models considered equivalent.
$4 \leq \Delta AIC \leq 7$	Moderate evidence
$\Delta AIC > 10$	Strong evidence

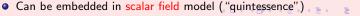
Table: AIC Thresholds (Burnham & Anderson, 2002)

Dark Energy

Dark Energy

P18+DESI BAO+ DES5Y Supernovae:

$w_0 w_a CDM$	w ₀	Wa	H_0 [km/s/Mpc]	$\Delta \chi^2$
	$-0.71^{+0.069}_{-0.073}$	$-1.13^{+0.35}_{-0.29}$	$67.43^{+0.65}_{-0.67}$	-18


Ramp	w_0	Z_S	H_0 [km/s/Mpc]	$\Delta \chi^2$
	$-0.53^{+0.16}_{-0.36}$	$0.25^{+0.031}_{-0.21}$	$66.15^{+0.63}_{-0.65}$	-12

where:
$$\Delta \chi^2 \equiv \chi^2_{\rm model} - \chi^2_{\Lambda {\rm CDM}}.$$

- $\triangle AIC \equiv \Delta \chi^2 + 2\Delta p$, Akaike Information Criterion, penalized by extra parameters
- $\Delta AIC|_{RAMP} = -8$ vs. ΛCDM

△ AIC Range	Interpretation
$\Delta AIC \leq 2$	Models considered equivalent.
$4 \leq \Delta AIC \leq 7$	Moderate evidence
$\Delta AIC > 10$	Strong evidence

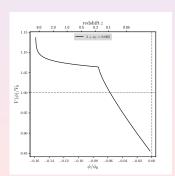
Table: AIC Thresholds (Burnham & Anderson, 2002)

Ramp potential

• Given any $w(a) > -1 \implies$ Scalar field with potential $V(\phi)$ can be reconstructed

(see Z.-K. Guo, N. Ohta, and Y.-Z. Zhang, Phys. Rev. D, 2005)

$$ho=rac{\dot{\phi}^2}{2}+V(\phi)\,,\qquad p=rac{\dot{\phi}^2}{2}-V(\phi)\,,\qquad w=p/
ho$$


Dark Energy

Ramp potential

• Given any $w(a) > -1 \implies$ Scalar field with potential $V(\phi)$ can be reconstructed

(see Z.-K. Guo, N. Ohta, and Y.-Z. Zhang, Phys. Rev. D, 2005)

$$ho=rac{\dot{\phi}^2}{2}+V(\phi)\,,\qquad p=rac{\dot{\phi}^2}{2}-V(\phi)\,,\qquad w=p/
ho$$

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Radiation

DESI BAC

Dark Energy DES5Y Supernovae

Ho Tension

Dark Radiation • Supernova (DES5Y dataset) fit also very important!

DESI BAC

Dark Energy DES5Y Supernovae

H_∩ Tension

- Supernova (DES5Y dataset) fit also very important!
- We tried to combine Pantheon+ with DESYR5 by removing common SNe

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

Dark Radiatior

- Supernova (DES5Y dataset) fit also very important!
- We tried to combine Pantheon+ with DESYR5 by removing common SNe

• Pantheon+: collection of SNe from many catalogues

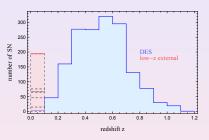
DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

Dark Radiatior

- Supernova (DES5Y dataset) fit also very important!
- We tried to combine Pantheon+ with DESYR5 by removing common SNe

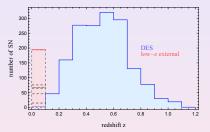

• Pantheon+: collection of SNe from many catalogues

- DES5Y: (almost) single experiment
 - About 1600 DES SNe at high-z (z > 0.1)
 - ullet Supplemented with old low redshift sample (\sim 190 SNe) at low z

DESI BAC

Dark Energy

H_∩ Tension



DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

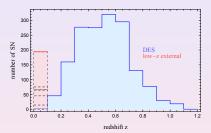
Dark Radiation

• The low redshift SNe of DES5Y are also in Pantheon+

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

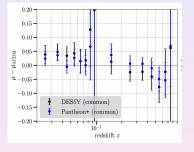


- The low redshift SNe of DES5Y are also in Pantheon+
- But such common SNe look different in the 2 catalogues!

DESI BAC

Dark Energy DES5Y Supernovae

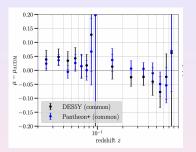
*H*_∩ Tension



- The low redshift SNe of DES5Y are also in Pantheon+
- But such common SNe look different in the 2 catalogues!
- Efstathiou, 2408.07175: low z sample of DES5Y has an offset compared to same SNe in Pantheon

DESI BAC

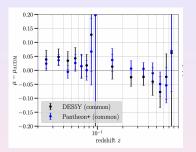
Dark Energy DES5Y Supernova


H_∩ Tension

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

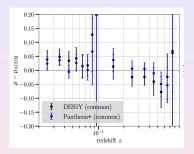


- We built two datasets (AN, Redi & Tesi, 2411.11685)

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension


- We built two datasets (AN, Redi & Tesi, 2411.11685)
- We combined them in both ways

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

Dark

- We built two datasets (AN, Redi & Tesi, 2411.11685)
- We combined them in both ways:

 - PANTHEON+ with DES5Y

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

Dark Radiation

Dataset	$\chi^2_{\min}(w_0w_a{ m CDM})$	Λ CDM exclusion
$\rm P18+DESI_{BAO}+DES5Y$	4431	3.9σ
$P18+DESI_{BAO}+Pantheon+$	4205	2.5σ
$P18+DESI_{BAO}+\overline{DES5Y}+Pantheon+$	5550	2.5σ
$P18 + DESI_{BAO} + \overline{Pantheon +} + DES5Y$	5569	3.8σ

 Evidence driven by the old low-z SNe reanalyzed by DES5Y Supernovae

DESI BAC

Dark Energy DES5Y Supernovae

H∩ Tension

Dataset	$\chi^2_{\min}(w_0w_a{ m CDM})$	$\Lambda \mathbf{CDM}$ exclusion
$\rm P18 + DESI_{BAO} + DES5Y$	4431	3.9σ
$P18+DESI_{BAO}+Pantheon+$	4205	2.5σ
$P18+DESI_{BAO}+\overline{DES5Y}+Pantheon+$	5550	2.5σ
$P18 + DESI_{BAO} + \overline{Pantheon +} + DES5Y$	5569	3.8σ

- Evidence driven by the old low-z SNe reanalyzed by DES5Y Supernovae
- Something needs to be clarified...

DESI BAC

Dark Energy DES5Y Supernovae

H_□ Tension

Dark Radiation We also allowed for a 'free relative offset' between low-z and high-z in DES5Y

DESI BAC

Dark Energy DES5Y Supernovae

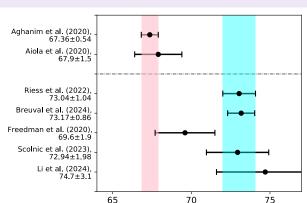
H₀ Tension

Dark Radiation We also allowed for a 'free relative offset' between low-z and high-z in DES5Y

• Evidence vanishes (1.7σ)

Table of Contents

DESI BAC

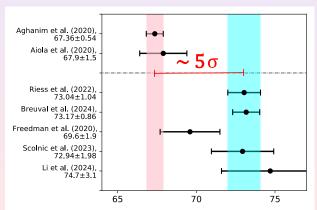

Dark Energy DES5Y Supernov

H₀ Tension

- 1 DESI BAO
 - Dark EnergyDES5Y Supernovae
- $3 H_0$ Tension
- 4 Dark Radiation

Disagreement in H_0 [km/s/Mpc]

Inferences from CMB+BAO+Uncalibrated SNe in the ACDM model disagree with the calibrated SNe (distance ladder) from SH0FS


(adapted from Di Valentino et al 21)

H₀ Tension

Disagreement in H_0 [km/s/Mpc]

Inferences from CMB+BAO+Uncalibrated SNe in the Λ CDM model disagree with the calibrated SNe (distance ladder) from SH0ES

(adapted from Di Valentino et al 21)

H₀ Tension

Addressing the Tension

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation EITHER measurements wrong (SH0ES calibration?) OR \text{ACDM Standard Cosmological Model falsified}

Addressing the Tension

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

- EITHER measurements wrong (SH0ES calibration?) OR \text{ACDM Standard Cosmological Model falsified}
- Many multi-parameter extensions have been proposed to resolve the Hubble tension
- Model-building has been difficult (before DESI)

Addressing the Tension

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

- EITHER measurements wrong (SH0ES calibration?) OR \text{ACDM Standard Cosmological Model falsified}
- Many multi-parameter extensions have been proposed to resolve the Hubble tension
- Model-building has been difficult (before DESI)
- In light of new BAO data (DESI 2024), we reassessed the status of tensions

Table of Contents

DESI BAC

Dark Energy
DES5Y Supernov.

40 Tension

Dark Radiation 1 DESI BAO

- Dark EnergyDES5Y Supernovae
- \bigcirc H_0 Tension
- 4 Dark Radiation

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

Dark Radiation ullet Extra radiation increases H in the Early universe o

changes
$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

Almost negligible today

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

Dark Radiation • Extra radiation increases H in the Early universe \rightarrow changes $r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$

- Almost negligible today
- Can be fermionic, bosonic, low mass, massless, interacting, non-interacting . . .
- Examples: thermal axions, gravitational waves, etc....

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

Dark Radiation DR parameterized as an "effective number of extra neutrino species"

$$N_{
m eff} \equiv (
ho_{
u} +
ho_{
m DR})/
ho_{
u,1}$$

 Λ CDM includes $N_{\rm eff} = 3.044$ for 3 (massive) SM neutrinos

DESI BAC

Dark Energy
DES5Y Supernovae

 H_0 Tension

Dark Radiation DR parameterized as an "effective number of extra neutrino species"

$$N_{\rm eff} \equiv (\rho_{
u} +
ho_{
m DR})/
ho_{
u,1}$$

 Λ CDM includes $N_{eff} = 3.044$ for 3 (massive) SM neutrinos

- Extra light degrees of freedom contribute as $N_{\text{eff}} = 3.044 + \Delta N_{\text{eff}}$
- We consider $\Delta N_{\rm eff} > 0$

Relic light particle abundance $(\Delta N_{\mathrm{eff}})$ from decoupling

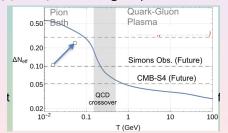
DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation • Relic abundance $\Delta N_{\rm eff} \propto \frac{\rho_a}{\rho_\gamma} \bigg|_{\rm CMB} \propto \frac{1}{g_{*,DEC}^{4/3}}$ at DECOUPLING

Relic light particle abundance $(\Delta N_{ m eff})$ from decoupling


DESI BAC

Dark Energy DES5Y Supernovae

 H_0 Tension

Dark Radiation • Relic abundance $\Delta N_{
m eff} \propto rac{
ho_a}{
ho_\gamma} |_{
m CMB} \propto rac{1}{g_{*,DEC}^{4/3}}$ at DECOUPLING

• Low $T_{\rm DECOUPLING} \implies$ largest possible $\Delta N_{\rm eff}$:

DESI BAC

Dark Energy

H₀ Tension

Dark Radiation We consider 2 particle physics models with 1 extra parameter: $\Delta \textit{N}_{\textrm{eff}}$

DESI BAC

Dark Energy
DES5Y Supernovae

H_∩ Tension

Dark Radiation We consider 2 particle physics models with 1 extra parameter: $\Delta N_{\rm eff}$

 Free-streaming (FS) DR: non-interacting light species (identical to massless neutrinos)

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

Dark Radiation We consider 2 particle physics models with 1 extra parameter: $\Delta N_{\rm eff}$

- Free-streaming (FS) DR: non-interacting light species (identical to massless neutrinos)
- **2** Fluid DR: self-interacting dark radiation, behaving as a perfect fluid with $(w=c_s^2=1/3)$ (analog to photon-baryon fluid),

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

Dark Radiation We consider 2 particle physics models with 1 extra parameter: $\Delta N_{\rm eff}$

- Free-streaming (FS) DR: non-interacting light species (identical to massless neutrinos)
- **2** Fluid DR: self-interacting dark radiation, behaving as a perfect fluid with $(w=c_s^2=1/3)$ (analog to photon-baryon fluid),

Other effects on CMB fluctuations (beyond r_d)

• DR \implies affects fluctuations at large k ("Silk" damping)

DESI BAC

Dark Energy
DES5Y Supernovae

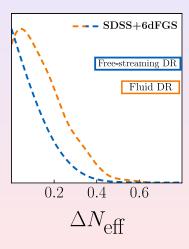
H₀ Tension

Dark Radiation We consider 2 particle physics models with 1 extra parameter: $\Delta N_{\rm eff}$

- Free-streaming (FS) DR: non-interacting light species (identical to massless neutrinos)
- **2** Fluid DR: self-interacting dark radiation, behaving as a perfect fluid with $(w=c_s^2=1/3)$ (analog to photon-baryon fluid),

Other effects on CMB fluctuations (beyond r_d)

- DR \implies affects fluctuations at large k ("Silk" damping)
- Freestreaming (FS) dark radiation ⇒ phase shift of the higher CMB peaks position


DR Constraints before DESI (without SH0ES)

DESI BA

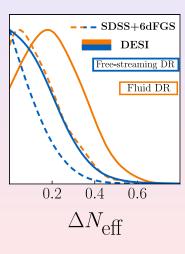
Dark Energy DES5Y Supernova

H₀ Tension

Dark Radiation

Combination of:

- CMB from Planck18
- Supernovae from Pantheon+
- BAO from SDSS+6DFGS


Updated Constraints from DESI (without SH0ES)

DESI BAC

Dark Energy
DES5Y Supernova

*H*₀ Tension

Dark Radiation

Combination of:

- CMB from Planck18
- Supernovae from Pantheon+
- BAO from SDSS+6DFGS
- vs. from DESI

Light Element Abundance Constraints (BBN)

DESI BAC

Dark Energy
DES5Y Supernov.

H₀ Tension

Dark Radiation Primordial element abundances are sensitive to the amount of radiation present during Big Bang Nucleosynthesis (BBN)

Light Element Abundance Constraints (BBN)

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation Primordial element abundances are sensitive to the amount of radiation present during Big Bang Nucleosynthesis (BBN)

ightarrow Constraints on $\Delta N_{\rm eff}$ with and without these data* (Aver et al 15, Cooke et al 18, Marcucci et al 16)

	Planck+DESI+Pantheon+	$+\mathbf{Y}_{He}, \mathbf{D}/\mathbf{H}$
Free-streaming	< 0.386	< 0.295
Fluid	$0.221^{+0.088}_{-0.18} (< 0.461)$	< 0.365

$$(Allali + AN + Rompineve 24)$$

^{*}Constraints sensitive to the choice of data for, e.g. the Y_{He} measurement (e.g. Aver et al 15 vs. Izotov et al 14)

DR produced before or after BBN?

DR could be produced after BBN

Example: decay of a massive particle at $|10 \, \mathrm{eV} \ll T \ll \mathrm{MeV}|$.

U- Tonsion

H₀ Tension

DR produced before or after BBN?

DESI BAC

Dark Energy
DES5Y Supernova

 H_0 Tensi

Dark Radiation DR could be produced after BBN

Example: decay of a massive particle at $10 \, \mathrm{eV} \ll T \ll \mathrm{MeV}$.

In this case:

- BBN constraints do not apply
- Abundance of free electrons not affected by DR

DR produced before or after BBN?

DESI BAC

Dark Energy

DES5Y Supernova

H₀ Tension

Dark Radiation DR could be produced after BBN

Example: decay of a massive particle at $10 \, \mathrm{eV} \ll T \ll \mathrm{MeV}$.

In this case:

- BBN constraints do not apply
- Abundance of free electrons not affected by DR

We consider 4 cases:

- Free-Streaming DR:
 - present before BBN
 - produced after BBN
- Fluid DR:
 - present before BBN
 - produced after BBN

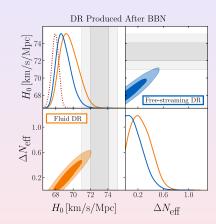
DESI alleviates the H_0 tension

DESI BAG

Dark Energy
DES5Y Supernov.

n Tensio

Dark Radiation

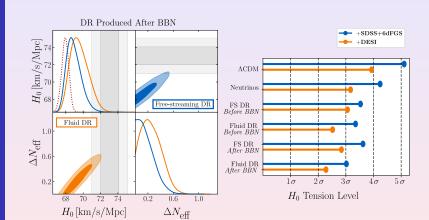

DESI alleviates the H_0 tension

DESI BAG

Dark Energy DES5Y Supernovae

H₀ Tension

Dark Radiation

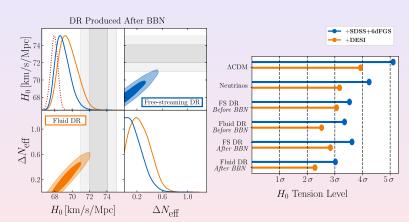

DESI alleviates the H_0 tension

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

Dark Radiation

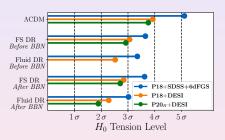

DESI alleviates the H_0 tension

DESI BAC

Dark Energy DES5Y Supernovae

H₀ Tension

Dark Radiation

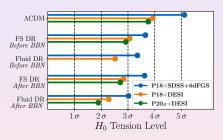


Lowest tension when DR is fluid, and when produced after BBN \rightarrow slightly above 2σ

(Allali + AN + Rompineve 24)

More recent Planck '20 Likelihood

We also use a more recent Planck '20 Likelihood ('Hillipop+Lollipop')+BAO+Pantheon:


Larger sky fraction

Dark Radiation

> Resolves an inconsistency ("A_L anomaly") in CMB lensing

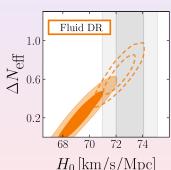
More recent Planck '20 Likelihood

We also use a more recent Planck '20 Likelihood ('Hillipop+Lollipop')+BAO+Pantheon:

Larger sky fraction

- Resolves an inconsistency ("A_L anomaly") in CMB lensing
- Lower H_0 tension (down to 1.87 σ)
- Justifies a combined fit with SH0ES

Combining with SH0ES is justified (Fluid DR) \rightarrow we find:


DESI BAG

Dark Energy DES5Y Supernov

0 Tensio

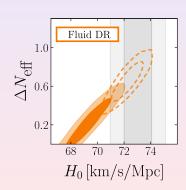
Combining with SH0ES is justified (Fluid DR) \rightarrow we find:

• Increased H_0

$$H_0 \left[\text{km/s/Mpc} \right]$$

$$H_0 = 69.56^{+0.85}_{-1.2} \rightarrow 72.26^{+0.77}_{-0.78}$$

(2.3 σ) \rightarrow (0.6 σ)


Combining with SH0ES is justified (Fluid DR) \rightarrow we find:

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation

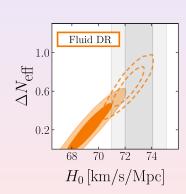
• Increased H_0

$$H_0 = 69.56^{+0.85}_{-1.2} \rightarrow 72.26^{+0.77}_{-0.78}$$

(2.3 σ) \rightarrow (0.6 σ)

• Evidence for dark radiation (5σ)

$$\Delta N_{
m eff} = 0.65 \pm 0.13$$


Combining with SH0ES is justified (Fluid DR) \rightarrow we find:

DESI BAO

DES5Y Supernova

H₀ Tension

Dark Radiation

$$H_0 = 69.56^{+0.85}_{-1.2} \rightarrow 72.26^{+0.77}_{-0.78}$$

(2.3 σ) \rightarrow (0.6 σ)

• Evidence for dark radiation (5σ)

• Increased H_0

$$\Delta N_{
m eff} = 0.65 \pm 0.13$$

Much better fit than ΛCDM

$$\Delta \chi^2 = -24.7$$
, $\Delta AIC = -22.7$

DESI BAC

Dark Energy
DES5Y Supernov.

H₀ Tension

Dark Radiation • Without SHOES: data seems to prefer time-dependent dark energy vs ΛCDM: not necessarily 'phantom'

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation • Without SHOES: data seems to prefer time-dependent dark energy vs ΛCDM: not necessarily 'phantom'

Possible systematics in DES5Y Supernovae?

DESI BAC

Dark Energy DES5Y Supernova

H_o Tension

- Without SHOES: data seems to prefer time-dependent dark energy vs ACDM: not necessarily 'phantom'
- Possible systematics in DES5Y Supernovae?
- With SHOES: The DR (fluid) model can accomodate,

DESI BAC

Dark Energy DES5Y Supernova

H₀ Tension

- Without SHOES: data seems to prefer time-dependent dark energy vs ΛCDM: not necessarily 'phantom'
- Possible systematics in DES5Y Supernovae?
- With SHOES: The DR (fluid) model can accomodate, while Λ CDM and varying dark energy models cannot \Longrightarrow Discarded (> 4σ tension in fit without SHOES)

DESI BAC

Dark Energy DES5Y Supernova

 H_0 Tension

- Without SHOES: data seems to prefer time-dependent dark energy vs ACDM: not necessarily 'phantom'
- Possible systematics in DES5Y Supernovae?
- With SHOES: The DR (fluid) model can accomodate, while Λ CDM and varying dark energy models cannot \Longrightarrow Discarded (> 4σ tension in fit without SHOES)
- → If SH0ES and DESI correct:
 - mild tension and Dark Radiation detected at 5σ

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

- Without SHOES: data seems to prefer time-dependent dark energy vs ACDM: not necessarily 'phantom'
- Possible systematics in DES5Y Supernovae?
- With SHOES: The DR (fluid) model can accomodate, while Λ CDM and varying dark energy models cannot \Longrightarrow Discarded (> 4σ tension in fit without SHOES)
- → If SH0ES and DESI correct:
 - mild tension and Dark Radiation detected at 5σ
- New DESI data coming soon (+ Euclid) on BAO

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

- Without SHOES: data seems to prefer time-dependent dark energy vs ACDM: not necessarily 'phantom'
- Possible systematics in DES5Y Supernovae?
- With SHOES: The DR (fluid) model can accomodate, while Λ CDM and varying dark energy models cannot \Longrightarrow Discarded (> 4σ tension in fit without SHOES)
- → If SH0ES and DESI correct:
 - ullet mild tension and Dark Radiation detected at 5σ
- New DESI data coming soon (+ Euclid) on BAO + Simons Observatory CMB (target $\sigma(\Delta N_{\rm eff}) = 0.07$)

EXTRA SLIDES

DESI BAC

Dark Energy
DES5Y Supernova

d∩ Tensio

DESL BAC

Dark Energy

Ho Tension

Dark Radiation ullet Neutrinos oscillate \Longrightarrow they have mass $m_1 < m_2 < m_3$

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation • Neutrinos oscillate \implies they have mass $m_1 < m_2 < m_3$

• We only know
$$\Delta m_{
m solar} = \sqrt{m_i^2 - m_j^2} \simeq 0.008$$
 eV, $\Delta m_{
m atm} = \sqrt{m_i^2 - m_k^2} \simeq 0.05$ eV from neutrino oscillations

DESI BAC

Dark Energy
DES5Y Supernova

H₀ Tension

Dark Radiation • Neutrinos oscillate \implies they have mass $m_1 < m_2 < m_3$

• We only know
$$\Delta m_{
m solar} = \sqrt{m_i^2 - m_j^2} \simeq 0.008$$
 eV, $\Delta m_{
m atm} = \sqrt{m_i^2 - m_k^2} \simeq 0.05$ eV from neutrino oscillations

• Overall mass $(\sum m_{\nu})$ not known. Two cases:

DESI BAC

Dark Energy DES5Y Supernova

*H*₀ Tension

Dark Radiation • Neutrinos oscillate \implies they have mass $m_1 < m_2 < m_3$

• We only know
$$\Delta m_{
m solar} = \sqrt{m_i^2 - m_j^2} \simeq 0.008$$
 eV, $\Delta m_{
m atm} = \sqrt{m_i^2 - m_k^2} \simeq 0.05$ eV from neutrino oscillations

- Overall mass $(\sum m_{\nu})$ not known. Two cases:
 - Normal hierarchy:

$$m_1 \lesssim m_2 \ll m_3 \implies \boxed{\sum m_{\nu} > 0.06 \text{ eV}}$$

DESI BAC

Dark Energy
DES5Y Supernova

*H*₀ Tension

Dark Radiation • Neutrinos oscillate \implies they have mass $m_1 < m_2 < m_3$

• We only know
$$\Delta m_{
m solar} = \sqrt{m_i^2 - m_j^2} \simeq 0.008 \ {
m eV},$$

$$\Delta m_{
m atm} = \sqrt{m_i^2 - m_k^2} \simeq 0.05 \ {
m eV} \ {
m from neutrino oscillations}$$

- Overall mass $(\sum m_{\nu})$ not known. Two cases:
 - Normal hierarchy:

$$m_1 \lesssim m_2 \ll m_3 \implies \boxed{\sum m_{\nu} > 0.06 \text{ eV}}$$

• Inverted hierarchy:

$$m_1 \ll m_2 \lesssim m_3 \implies \boxed{\sum m_{\nu} > 0.1 \; \mathrm{eV}}$$

DESI BAG

Dark Energy
DES5Y Supernova

 H_0 Tension

Dark Radiation • Cosmology is sensitive to $\sum m_{\nu}$:

DESI BAC

Dark Energy
DES5Y Supernova

Ho Tension

Dark Radiation • Cosmology is sensitive to $\sum m_{\nu}$:

- When $\frac{\vec{k}}{a}$ becomes smaller than $m \Longrightarrow$ become non-relativistic
- Transition: Dark radiation → Dark matter

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

- Cosmology is sensitive to $\sum m_{\nu}$:
 - When $\frac{\vec{k}}{a}$ becomes smaller than $m \Longrightarrow$ become non-relativistic
 - Transition: Dark radiation → Dark matter
 - Other effect: Free-streaming ⇒ large velocities ⇒ they erase overdensities on small scales in the matter distribution

DESI BAC

Dark Energy DES5Y Supernova

H₀ Tension

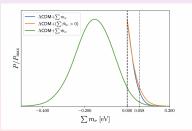
Dark Radiation • DESI+ Planck 2018 CMB $\implies \sum m_{\nu} < 0.072 \; \mathrm{eV}$ (at 2σ , with a prior $\sum m_{\nu} > 0$) (from DESI, Adame et al 24)

DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

- DESI+ Planck 2018 CMB $\implies \sum m_{\nu} < 0.072 \; \mathrm{eV}$ (at 2σ , with a prior $\sum m_{\nu} > 0$) (from DESI, Adame et al 24)
- It would imply:
 - Inverted hierarchy excluded (with this prior $\sum m_{
 u} > 0$)


DESI BAC

Dark Energy
DES5Y Supernovae

H₀ Tension

Dark Radiation • DESI+ Planck 2018 CMB $\implies \sum m_{\nu} < 0.072 \; \mathrm{eV}$ (at 2σ , with a prior $\sum m_{\nu} > 0$) (from DESI, Adame et al 24)

- It would imply:
 - Inverted hierarchy excluded (with this prior $\sum m_{
 u} > 0$)
 - Problem: preference for "negative" neutrino masses

(N. Craig, D. Green, J. Meyers and S. Rajendran, arXiv:2405.00836.)

• DESI+ Planck 2018 CMB $\implies \sum m_{\nu} < 0.072 \text{ eV}$ (at 2σ , with a prior $\sum m_{\nu} > 0$) (from DESI, Adame et al 24)

DESI BAC

Dark Energy

DES5Y Supernova

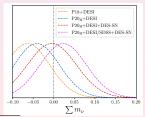
H₀ Tension

• DESI+ Planck 2018 CMB $\implies \sum m_{\nu} < 0.072 \text{ eV}$ (at 2σ , with a prior $\sum m_{\nu} > 0$) (from DESI, Adame et al 24)

- We showed that when using:
 - Planck 2020 likelihood ("Hillipop+Lollipop")
 - Supernovae data (Pantheon+ or DES)

• DESI+ Planck 2018 CMB $\implies \sum m_{\nu} < 0.072 \text{ eV}$ (at 2σ , with a prior $\sum m_{\nu} > 0$) (from DESI, Adame et al 24)

We showed that when using:


Dark

Radiation

- Planck 2020 likelihood ("Hillipop+Lollipop")
- Supernovae data (Pantheon+ or DES)
- \bullet Bounds are relaxed! $\sum m_{
 u} < 0.11 \; \mathrm{eV}$ (Inverted allowed)

• DESI+ Planck 2018 CMB $\implies \sum m_{\nu} < 0.072 \text{ eV}$ (at 2σ , with a prior $\sum m_
u > 0$) (from DESI, Adame et al 24)

- We showed that when using:
 - Planck 2020 likelihood ("Hillipop+Lollipop")
 - Supernovae data (Pantheon+ or DES)
- Bounds are relaxed! $\sum m_{\nu} < 0.11 \; \mathrm{eV}$ (Inverted allowed)
- More Positive neutrino masses preferred,

Dark Radiation

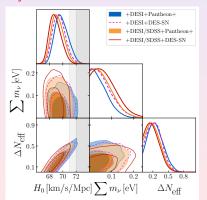
I. Allali, AN 2024, 2406.14554 [astro-ph.CO]

• In the Fluid Dark Radiation model even more positive

DESI BAC

Dark Energy
DES5Y Supernov.

H₀ Tension


DESLIBAC

Dark Energy
DES5Y Supernovae

H∩ Tension

Dark Radiation • In the Fluid Dark Radiation model even more positive

• Central value gets close to expectation (0.05 eV) from normal hierarchy: \sim 0.04 eV

