Exploring the Flavor Symmetry Landscape

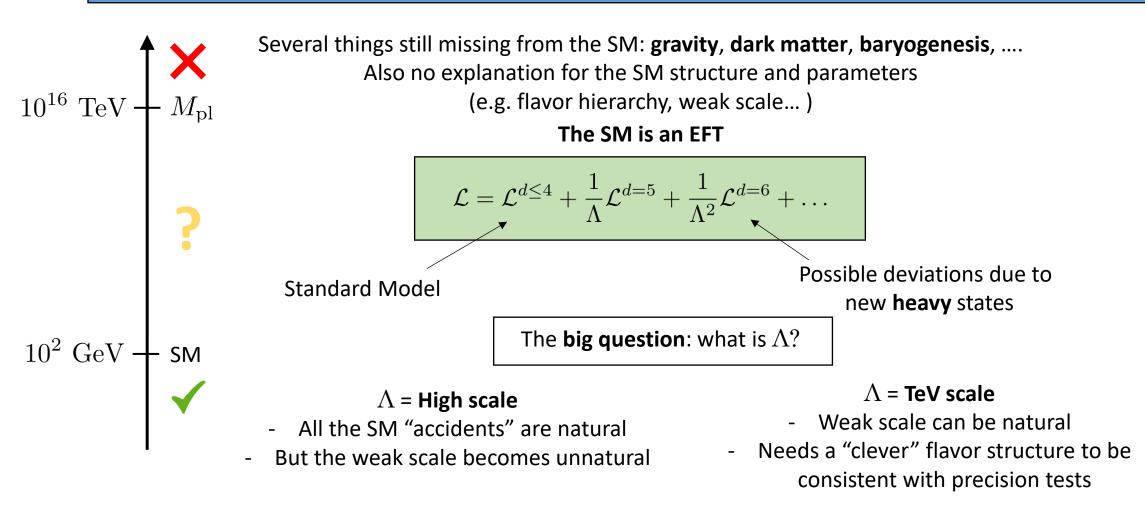
Alfredo Glioti

INFN - Roma

TPPC 2024 THEORY RETREAT 19/12/2024

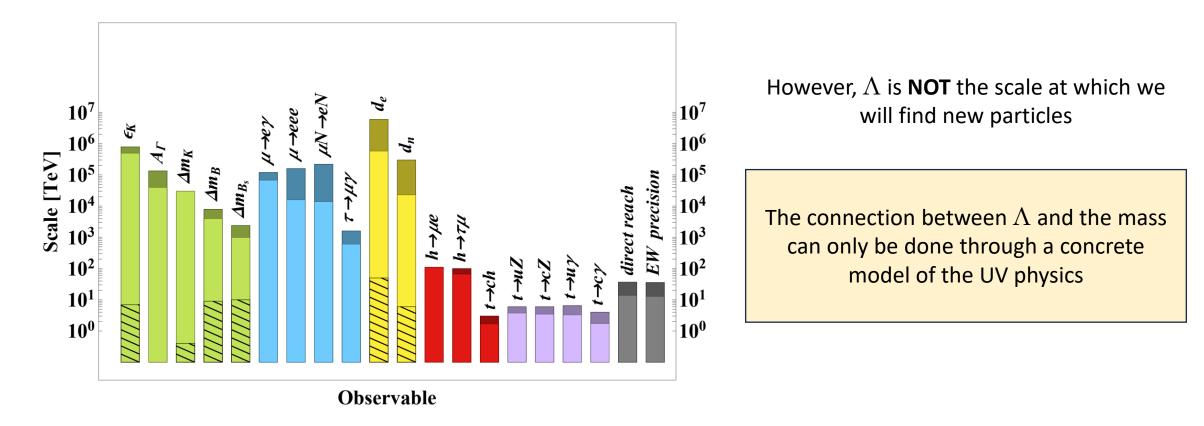
Based on 2402.09503, AG, Riccardo Rattazzi, Lorenzo Ricci, Luca Vecchi

New physics searches

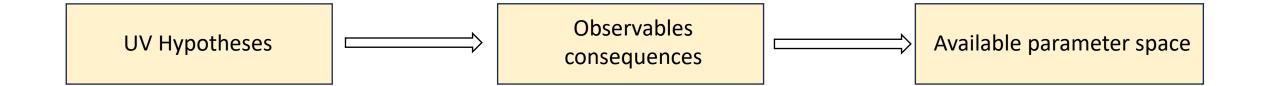


Indirect probes

Precision measurements can indirectly probe scales much higher than the energies of colliders



Our workflow



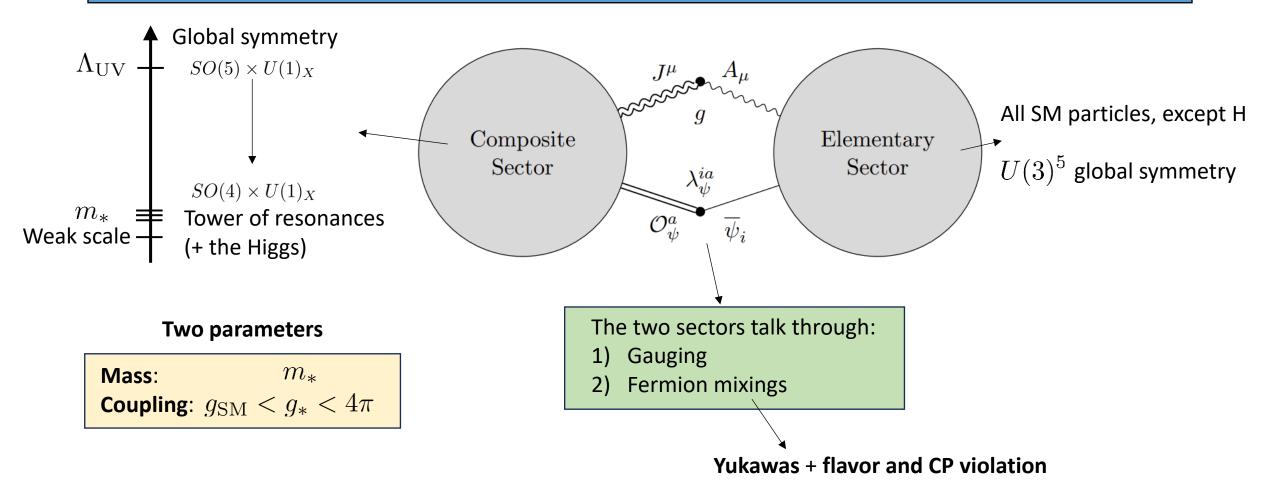
What are the hypotheses that allow for physics at TeV?

This can only be answered with a concrete model Many BSM flavor models studied these last decades

Our choice: Composite Higgs + Partial Compositeness

Given the current (and near future) indirect bound, what can be discovered by LHC / FCC?

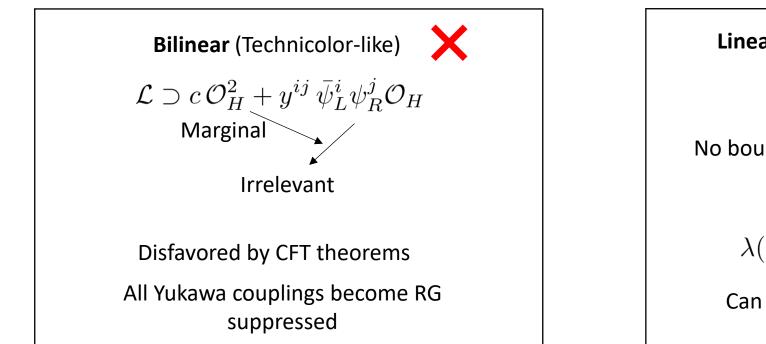
Composite Higgs Review



Partial compositeness

The **Yukawas** come from the interactions between composite and elementary sector

Two possibilities



Linear mixing (Partial compositeness)

 $\mathcal{L} \supset \lambda^{ij} \, ar{\psi}^i \mathcal{O}_\psi$

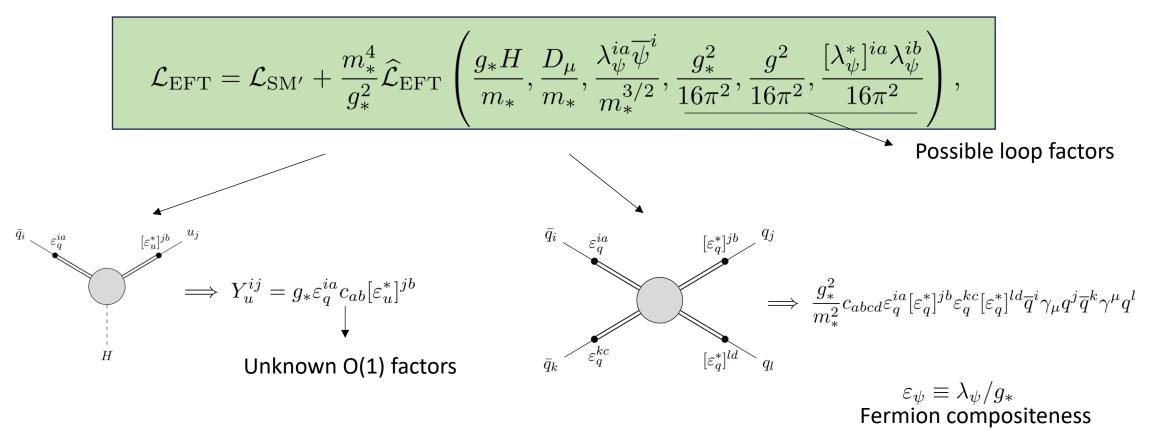
No bounds on anomalous dimension of Odim $[\mathcal{O}_{1}] = 5/2 \pm \infty$

$$\lambda(m_*) \approx \lambda(\Lambda_{\rm UV}) \left(\frac{m_*}{\Lambda_{\rm UV}}\right)^{\gamma_{\psi}}$$

Can generate both small and large yukawas dynamically

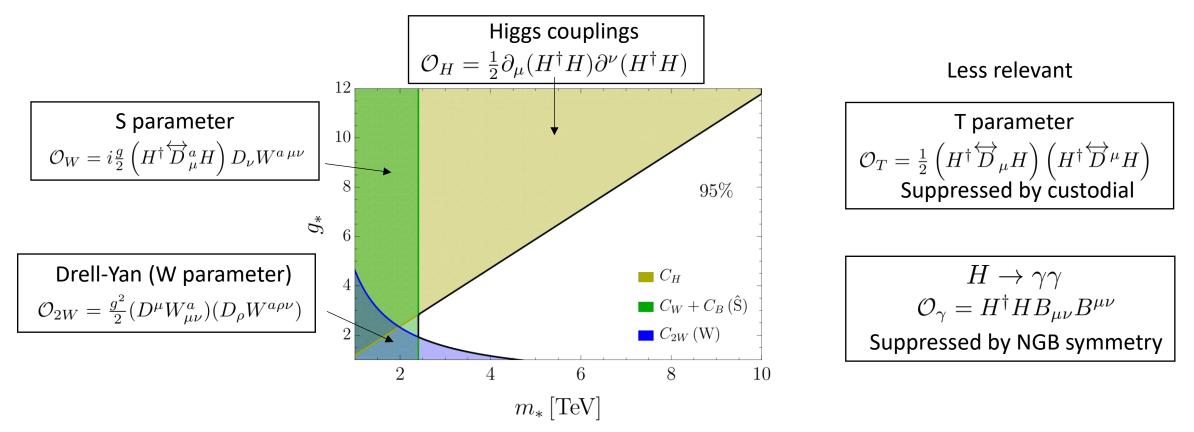
SILH Lagrangian

Putting together these hypotheses, one obtains a general effective Lagrangian



Bosonic Constraints

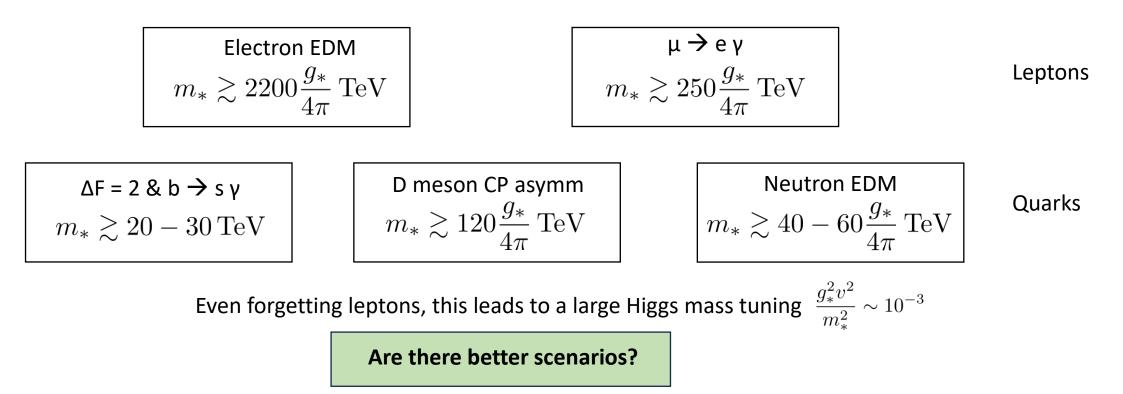
Before discussing flavor, main constraints from the bosonic sector



Flavor Anarchy

Anarchic partial compositeness: structureless O(1) flavor and CP violating coefficients

Can explain flavor hierarchies dynamically, but suffers from strong bounds...



Maximal Flavor Symmetry

Another possibility is assuming the maximal flavor symmetry structure in the strong sector that reproduces the Standard Model (focus on the quark sector)

$$\mathcal{L}_{\text{mix}} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,$$

For some models we need two different partners for the left quarks

Two sets of mixings: **Universal** = real and proportional to Identity, **Non-universal** = contain flavor- and CP- breaking

$$\mathcal{G}_{\mathrm{strong}} \times \mathcal{G}_{\mathrm{elem}} \times CP \to \mathcal{G}_{\mathrm{F}} \times CP \to U(1)_B$$

Maximal Flavor Symmetry → Minimal Flavor Violation

Right-Universality MFV

$$\mathcal{L}_{\text{mix}} = \frac{\lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \frac{\lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a}{\propto Y_{\psi}} \propto 1$$

 $\mathcal{G}_{\text{strong}} = U(3)_U \times U(3)_D \longrightarrow \mathcal{G}_F \equiv U(3)_q \times U(3)_{U+u} \times U(3)_{D+d}$

$$\mathrm{RU}: \quad \begin{cases} \lambda_{q_u} \sim \frac{1}{\varepsilon_u} \begin{pmatrix} y_u & 0 & 0\\ 0 & y_c & 0\\ 0 & 0 & y_t \end{pmatrix}, & \lambda_{q_d} \sim \frac{1}{\varepsilon_d} V_{\mathrm{CKM}} \begin{pmatrix} y_d & 0 & 0\\ 0 & y_s & 0\\ 0 & 0 & y_b \end{pmatrix}, \\ \lambda_u \sim g_* \begin{pmatrix} \varepsilon_u & 0 & 0\\ 0 & \varepsilon_u & 0\\ 0 & 0 & \varepsilon_u \end{pmatrix}, & \lambda_d \sim g_* \begin{pmatrix} \varepsilon_d & 0 & 0\\ 0 & \varepsilon_d & 0\\ 0 & 0 & \varepsilon_d \end{pmatrix}. \end{cases}$$

Left-Universality MFV

Alternatively, we could have Left-Universality

$$\mathcal{L}_{\rm mix} = \lambda_q^{ia} \overline{q}_L^i \mathcal{O}_q^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a \,,$$

$$\mathcal{G}_{\text{strong}} = U(3)_Q \longrightarrow \mathcal{G}_F = U(3)_{Q+q} \times U(3)_u \times U(3)_d$$

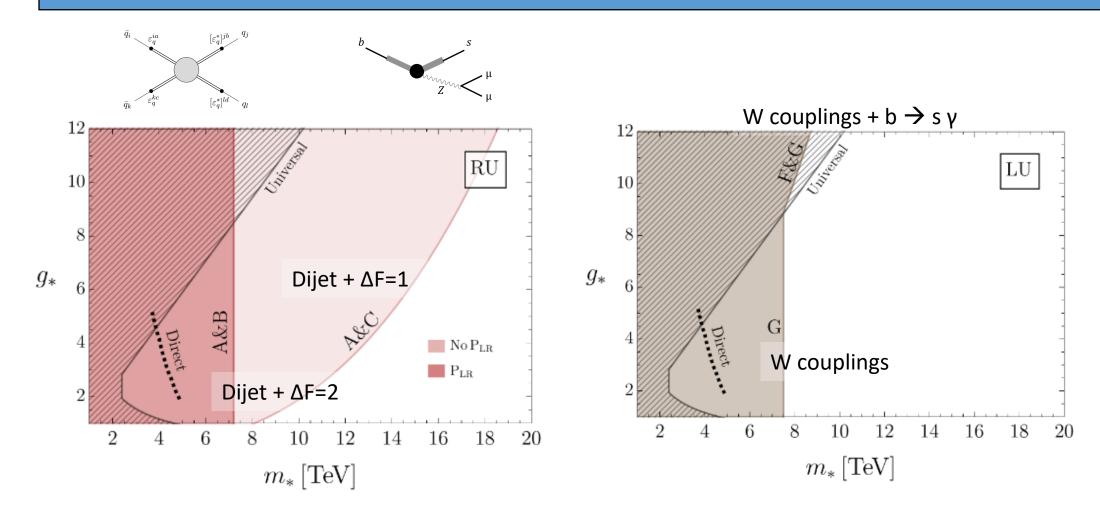
$$LU: \begin{cases} \lambda_{q} \sim \begin{pmatrix} \varepsilon_{q} & 0 & 0\\ 0 & \varepsilon_{q} & 0\\ 0 & 0 & \varepsilon_{q} \end{pmatrix} g_{*}, \\ \lambda_{u} \sim \frac{1}{\varepsilon_{q}} \begin{pmatrix} y_{u} & 0 & 0\\ 0 & y_{c} & 0\\ 0 & 0 & y_{t} \end{pmatrix}, \\ \lambda_{d} \sim \frac{1}{\varepsilon_{q}} \begin{pmatrix} y_{d} & 0 & 0\\ 0 & y_{s} & 0\\ 0 & 0 & y_{b} \end{pmatrix} V_{CKM}^{\dagger} \end{cases}$$

In this case there is a single ϵ parameter

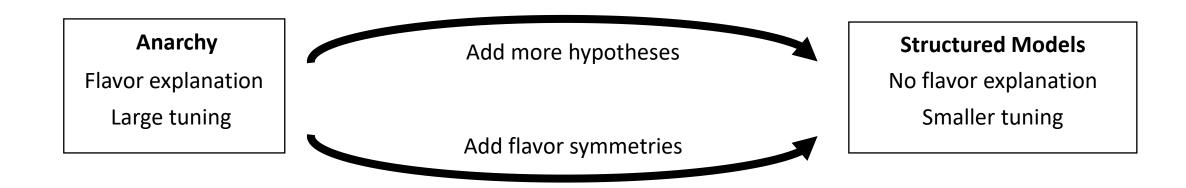
$$\frac{y_t}{g_*} \lesssim \varepsilon_q \lesssim 1.$$

Still MFV, but a completely different phenomenology than the right-handed counterpart

MFV Recap



The flavor problem



How close to the TeV can Composite Higgs models be?

What's in the middle between these two possibilities?

- Smaller global symmetry group
 - Adding LR global symmetry
 - Dipoles at one loop

Partial-up Right Universality

$$\mathcal{L}_{\text{mix}} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,$$

$$\mathcal{G}_{\text{strong}} = U(2)_U \times U(1)_U \times U(3)_D$$

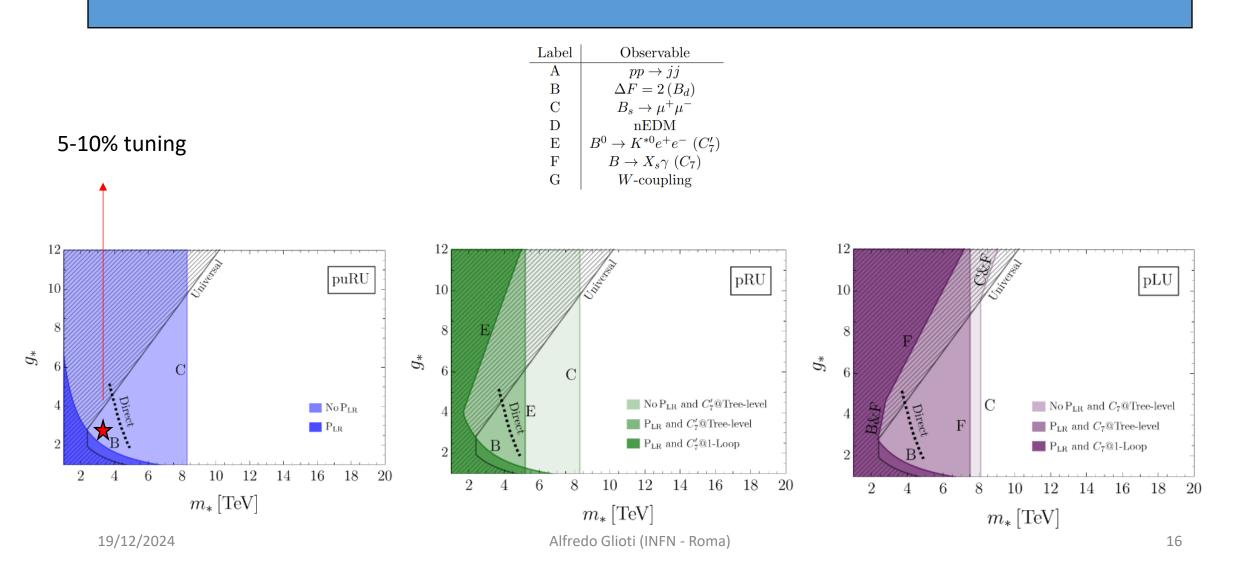
$$puRU: \begin{cases} \lambda_{q_u} \sim \frac{1}{\varepsilon_u} \begin{pmatrix} y_u & 0\\ 0 & y_c\\ ay_c & by_c \end{pmatrix} \oplus \frac{1}{\varepsilon_{u_3}} \begin{pmatrix} 0\\ 0\\ y_t \end{pmatrix}, \quad \lambda_{q_d} \sim U_d \frac{1}{\varepsilon_d} \begin{pmatrix} y_d & 0 & 0\\ 0 & y_s & 0\\ 0 & 0 & y_b \end{pmatrix}, \\ \lambda_u \sim g_* \begin{pmatrix} \varepsilon_u & 0\\ 0 & \varepsilon_u\\ 0 & 0 \end{pmatrix} \oplus g_* \begin{pmatrix} 0\\ 0\\ \varepsilon_{u_3} \end{pmatrix}, \quad \lambda_d \sim g_* \begin{pmatrix} \varepsilon_d & 0 & 0\\ 0 & \varepsilon_d & 0\\ 0 & 0 & \varepsilon_d \end{pmatrix}. \end{cases}$$

$$Y_u \sim \lambda_{q_u} \lambda_u^\dagger / g_*, \ Y_d \sim \lambda_{q_d} \lambda_d^\dagger / g_*$$

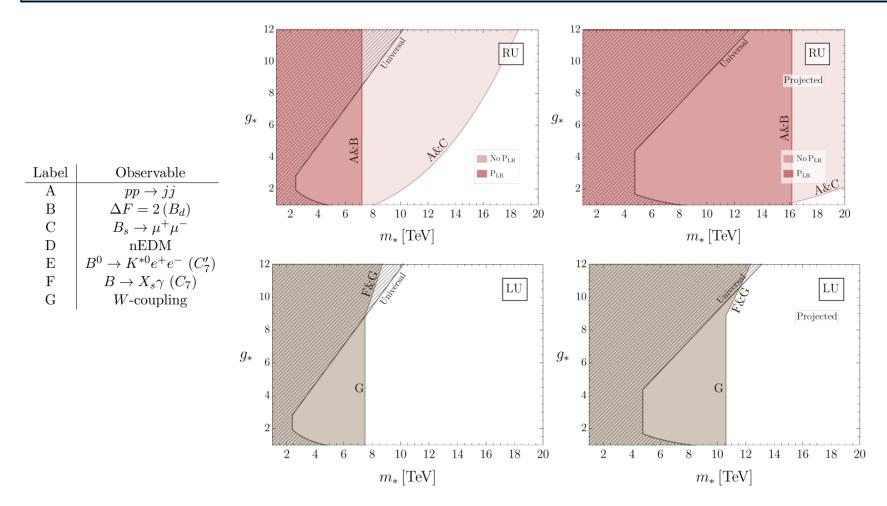
1st,2nd generations are separated from the 3rd in the up-sector

$$\frac{y_c}{g_*} \lesssim \varepsilon_u \lesssim 1, \quad \frac{y_t}{g_*} \lesssim \varepsilon_{u_3} \lesssim 1, \quad \frac{y_b}{g_*} \lesssim \varepsilon_d \lesssim 1, \quad |a| \sim 1, \quad |b| \sim 1$$

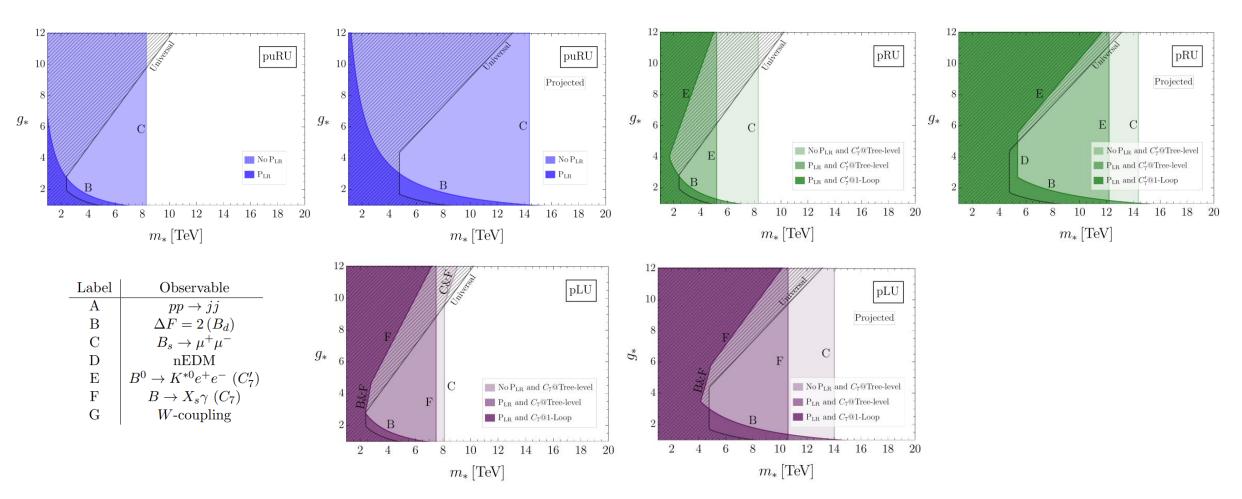
Partial Universality



The future



The future



Summary

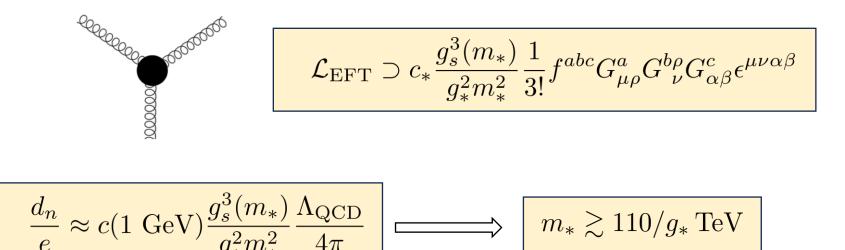
- Flavor is one of the biggest hurdles for models that address the hierarchy problem
- Concrete UV hypotheses are necessary to have a complete picture of the phenomenology. Hypotheses translate to selection rules and correlations between observables
- TeV scale new physics is still possible, especially in the puRU scenario, and will be tested/excluded in the next decade(s)
- Other models seem to live farther from the TeV and the next decades of experiment will tell us their fate
- In particular MFV is NOT the best choice in the case of a Strongly interacting Higgs
- In general, flavor observables are the ones that gives the stronger indirect tests on possible new physics models

BACKUP

CP violation

There is another flavor-independent bound, seemingly missed by the literature

If the strong sector dynamics violates CP we generate a neutron EDM from



This bound is independent on the BSM flavor structure. Physics at TeV requires that the composite dynamics is CP invariant

Maximal Flavor Symmetry

The extreme symmetric scenario is when all flavor breaking is contained in the SM Yukawas Usually referred as **Minimal Flavor Violation**

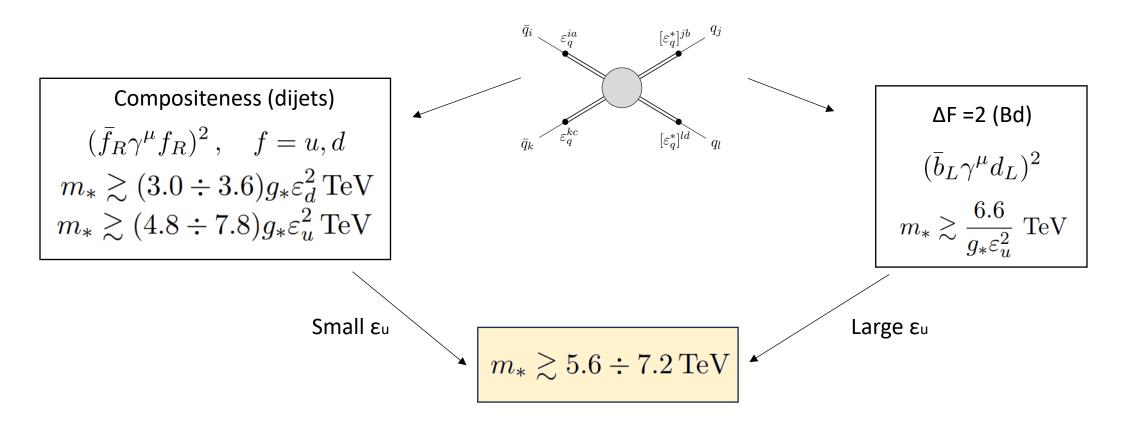
$$\mathcal{L}_{\text{mix}} = \lambda_{q_u}^{ia} \overline{q}_L^i \mathcal{O}_{q_u}^a + \lambda_{q_d}^{ia} \overline{q}_L^i \mathcal{O}_{q_d}^a + \lambda_u^{ia} \overline{u}_R^i \mathcal{O}_u^a + \lambda_d^{ia} \overline{d}_R^i \mathcal{O}_d^a,$$

A total of 5 different possibilities

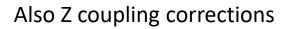
Name	$ \mathcal{G}_{ ext{strong}} $	Universal λ_{ψ}	$ $ \mathcal{G}_F	Non-universal λ_{ψ}	-
Right Univ.	$U(3)_U \times U(3)_D$	$\lambda_u \propto {f 1}, \lambda_d \propto {f 1}$	$U(3)_q \times U(3)_{U+u} \times U(3)_{D+d}$	$\lambda_{q_u} \propto Y_u, \lambda_{q_d} \propto Y_d$	
Left Univ. $(Q_u Q_d)$	$U(3)_U \times U(3)_D$	$\lambda_{q_u} \propto {f 1}, \lambda_{q_d} \propto {f 1}$	$U(3)_{q+U+D} \times U(3)_u \times U(3)_d$	$\lambda_u \propto Y_u^\dagger, \lambda_d \propto Y_d^\dagger$	We focused
Mixed Univ. $(Q_u D)$					
Mixed Univ. $(Q_d U)$	$U(3)_U \times U(3)_D$	$\lambda_u \propto {f 1}, \lambda_{q_d} \propto {f 1}$	$U(3)_{q+D} \times U(3)_{U+u} \times U(3)_d$	$\lambda_{q_u} \propto Y_u, \lambda_d \propto Y_d^\dagger$	on these two
Left Univ. (Q)	$U(3)_{U+D}$	$\lambda_{q_u} \propto {f 1}, \lambda_{q_d} \propto {f 1}$	$U(3)_{q+U+D} \times U(3)_u \times U(3)_d$	$\lambda_u \propto Y_u^\dagger, \lambda_d \propto Y_d^\dagger$	

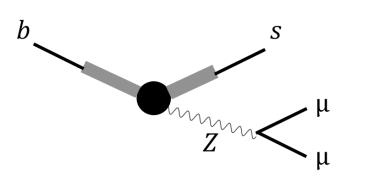
Right-Universality MFV

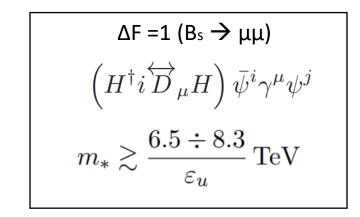
Most important constraints come from 4-fermion operators



Right-Universality MFV







But they can be suppressed by "PLR protection"

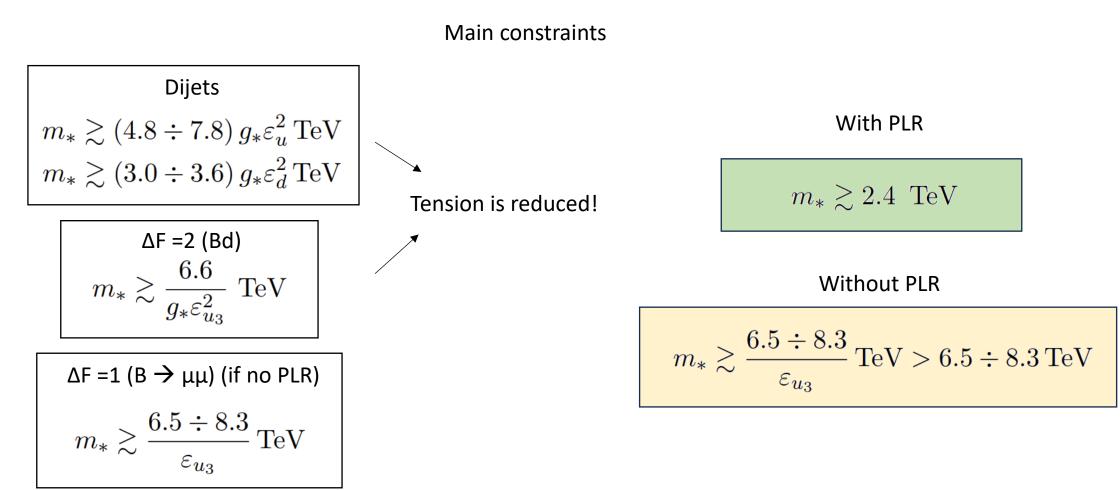
Accidental symmetry that happens in some embedding of SO(5) \rightarrow O(4)

$$[\mathcal{O}_{qD}^{(1)}]^{ij} \equiv \bar{q}_L^i \gamma^\mu q_L^j \ \partial^\nu B_{\nu\mu} \quad \longrightarrow \quad m_* \gtrsim \frac{1.2 \div 3.5}{g_* \varepsilon_u} \,\mathrm{TeV}$$

Left-Universality MFV

In this model there are **no flavor-violating 4 fermion operators** at tree-level

Partial-up Right Universality



19/12/2024

Partial-up Right Universality

Luckily the structure is such neutron EDMs are not generated at tree-level

For example, for the up dipole

 $[\mathcal{O}_{u\gamma}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} u_R^j) \widetilde{H} F_{\mu\nu}$

$$\mathcal{C}_{u\gamma} \propto \lambda_{q_u}^{(2)} [\lambda_u^{(2)}]^{\dagger} + r_{\gamma} \lambda_{q_u}^{(1)} [\lambda_u^{(1)}]^{\dagger} = \begin{pmatrix} y_u & 0 & 0\\ 0 & y_c & 0\\ ay_c & by_c & r_{\gamma} y_t \end{pmatrix}$$

All the phases can be rotated to the down-sector

$$u_R^1 \to u_R^1 e^{-i\arg[a]}, \quad u_R^2 \to u_R^2 e^{-i\arg[b]}$$

 $q_L^1 \to q_L^1 e^{-i\arg[a]}, \quad q_L^2 \to q_L^2 e^{-i\arg[b]}$

The only physical imaginary parts involve both up and down structures → EDMs arise at **loop level**

Partial Right Universality

Extending the U(2) also to the down-sector

$$pRU: \begin{cases} \lambda_{q_u} \sim \frac{1}{\varepsilon_u} \begin{pmatrix} y_u & 0\\ 0 & y_c\\ ay_c & by_c \end{pmatrix} \oplus \frac{1}{\varepsilon_{u_3}} \begin{pmatrix} 0\\ 0\\ y_t \end{pmatrix}, \quad \lambda_{q_d} \sim \widetilde{U}_d \frac{1}{\varepsilon_d} \begin{pmatrix} y_d & 0\\ 0 & y_s\\ a'y_s & b'y_s \end{pmatrix} \oplus \widetilde{U}_d \frac{1}{\varepsilon_{d_3}} \begin{pmatrix} 0\\ 0\\ y_b \end{pmatrix} \\ \frac{1}{\varepsilon_{u_3}} \begin{pmatrix} \varepsilon_u & 0\\ 0\\ \varepsilon_{u_3} \end{pmatrix}, \quad \lambda_d \sim g_* \begin{pmatrix} \varepsilon_d & 0\\ 0 & \varepsilon_d\\ 0 & 0 \end{pmatrix} \oplus g_* \begin{pmatrix} 0\\ 0\\ \varepsilon_{d_3} \end{pmatrix}. \end{cases}$$

$$New \text{ parameters} \\ \frac{y_s}{g_*} \lesssim \varepsilon_d \lesssim 1, \quad \frac{y_b}{g_*} \lesssim \varepsilon_{d_3} \lesssim 1 \end{cases}$$

$$Y_u \sim \lambda_{q_u} \lambda_u^{\dagger}/g_*, \quad Y_d \sim \lambda_{q_d} \lambda_d^{\dagger}/g_*$$

$$a, b, a', b' \text{ still O(1)}$$

Partial Left-Universality

Or similarly for the Left-Universality model

pLU:
$$\begin{cases} \lambda_q \sim \begin{pmatrix} \varepsilon_q & 0\\ 0 & \varepsilon_q\\ 0 & 0 \end{pmatrix} g_* \oplus \begin{pmatrix} 0\\ 0\\ \varepsilon_{q_3} \end{pmatrix} g_* \\ \lambda_u \sim \frac{1}{\varepsilon_q} \begin{pmatrix} y_u & 0\\ 0 & y_c\\ a^*y_c & b^*y_c \end{pmatrix} \oplus \frac{1}{\varepsilon_{q_3}} \begin{pmatrix} 0\\ 0\\ y_t \end{pmatrix} \\ \lambda_d \sim \frac{1}{\varepsilon_q} \begin{pmatrix} y_d & 0\\ 0 & y_s\\ a'^*y_s & b'^*y_s \end{pmatrix} \widetilde{O}_d \oplus \frac{1}{\varepsilon_{q_3}} \begin{pmatrix} 0\\ 0\\ y_b \end{pmatrix} \\ \mathcal{O}(\lambda) \text{ matrix} \end{cases}$$

$$Y_u = \lambda_q \lambda_u^\dagger / g_*, \ Y_d = \lambda_q \lambda_d^\dagger / g_*$$

With

$$\frac{y_c}{g_*} \lesssim \varepsilon_q \lesssim 1 \,, \qquad \frac{y_t}{g_*} \lesssim \varepsilon_{q_3} \lesssim 1$$

a, b, b' are O(1), but a' must be $O(\lambda)$ to reproduce the CKM, but no constraint on their phases

Partial Right/Left Universality

For both models nEDMs appear at loop level and give lower bound for the various ϵ

But new observables become important

b \rightarrow s γ at tree-level $[\mathcal{O}_{dB}]^{ij} = (\bar{q}_L^i \sigma^{\mu\nu} d_R^j) H B_{\mu\nu}$

pRU: $m_* \gtrsim (4.5 \div 5.2) \,\text{TeV}$ pLU: $m_* \gtrsim (4.9 \div 7.5) \,\text{TeV}$ But in all known holographic models, such operators arise at loop level

