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Field-level inference

Fit the whole map, not statistics

At the moment, not possible for LSS using sims.
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Field-level inference

Perturbative forward modeling

IC nonlinear density field using PT

3

over these large displacements when computing the two-point function famously leads to the broadening of the BAO
peak [85–87]. This can substantially degrade the measurement of the BAO scale, one of the most important cosmological
parameters inferred from galaxy surveys. On the other hand, assuming that the e�ects of large displacements are
properly taken into account, the forward modeling can recover the full linear theory information about the position of
the BAO peak, as demonstrated in [81]. This is not a surprise, since the same knowledge of the long-short couplings
at the map level is exploited in the BAO reconstruction algorithms, used in practice to sharpen the BAO peak and
improve measurement of its position [86, 88, 89].

In this paper we explore less-known examples of di�erent type where averaging over the long-short interactions leads
to degradation of errors rather than dilution of signal. Also in such cases the field-level inference can be more optimal
than the conventional analysis based on the n-point functions. We identify new large parameters associated to each
of these examples and show that they are related to the variance of powers of the density contrast ”. For instance,
depending on the shape of the linear power spectrum, the variance of ”2 on large scales can be very large, even if the
variance of ” is small. In the analyses using n-point functions, these large parameters can lead to sizable contributions
to the covariance matrices, impacting the inference of all cosmological parameters. For example, long modes can
modulate the short-scale fluctuations, which can lead to a large scatter in the power spectrum on small scales once the
average over the long modes is taken [2, 90–93]. As we will see, this contribution to the small scale covariance matrix
is exactly controlled by the variance of ”2. The long-short couplings can impact the covariance on large scales as
well. The short modes can couple (through the nonlinear bias) to produce the long-wavelength field of biased tracers3

with flat power spectrum. Once the short modes are averaged over, their contribution to the power spectrum and the
covariance matrix (controlled again by the parameter related to the variance of ”2) is indistinguishable from the shot
noise. However, depending on the observed sample, the amplitude of this noise can be much larger than the Poisson
prediction, producing larger error bars than expected. Unlike in the standard analyses, none of these issues impact
cosmological inference at the field level, where all relevant long-shot couplings are automatically computed and taken
into account.

One important feature of these examples is that unexpectedly large contributions to the covariance do not come
from the fully nonlinear regime, but rather from couplings of long and short modes. Such interactions are usually
easier to compute in perturbation theory or measure in simulations. Given this, instead of doing the full forward
modeling, one can look for simple modified estimators for cosmological parameters which have nearly optimal variance.
This is similar to the case of local primordial non-Gaussianity in the cosmic microwave background (CMB) where the
optimal estimators for f local

NL
have to take into account the realization of the long modes in the survey [94]. In many

aspects we follow the logic of [94] and adopt it to relevant cases in large-scale structure. One important result of our
analysis is that the perturbatively-calculated posterior can be used to motivate the form of optimal estimators and we
will show a couple of examples that illustrate this point.

The paper is structured as follows: in Section II we derive perturbative expressions for errors on cosmological
parameters at the field level (with and without marginalization over linear bias); in Section III we compare power
spectrum plus bispectrum to forward modeling; in Section IV we discuss three cases where additional parameters
beside the variance of the density field are present in the game and consequently the field-level analysis can be di�erent
that standard ones; we conclude in Section V. Appendix A collects some non-perturbative results beyond what we
derive in Section II; Appendix B shows how to perturbatively include a finite shot noise at the field level.

II. FROM LIKELIHOOD TO POSTERIOR – PERTURBATIVE INVERSION

In this section we show how to arrive at the expression for the full posterior and the Fisher matrix for cosmological
parameters at the field level, in the limit of small noise. We apply this formula to the case where the only parameter
in the theory is the nonlinear scale kNL and derive explicit expressions for the posterior and the Fisher matrix at the
one-loop order.

A. Posterior in the limit of small noise

Let us imagine that the forward model for the nonlinear galaxy field ”g is known in terms of the linear density field ”.
We collect cosmological and bias parameters in ◊. The forward model is then given by

”g = ”g[”, ◊] + ‘g (1)

3
Note that this is not true for dark matter, since the mass and momentum conservation imply that the long modes produced by interactions

of the short modes are suppressed by k2/q2
, where k is a wavenumber of the long mode and q a typical wavenumber of the short modes.

This can be checked explicitly in perturbation theory. For instance, in the limit q1 ¥ ≠q2 the F2(q1, q2) kernels scale as k2/q2
1 , where

k = q1 + q2.
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for a given noise field ‘g. On large scales we can approximate the likelihood of the galaxy density field as a Gaussian

L[”̂g|”, ◊] = normalization ◊ exp
3

≠
1
2

⁄

k

|”̂g(k) ≠ ”g[”, ◊](k)|2
P‘

4
, (2)

where P‘ is the noise power spectrum. This form of the likelihood can be rigorously justified in the perturbative
framework that we are going to use throughout the paper. The fiducial galaxy field ”̂g is given in terms of fiducial
values of the initial field ”̂, fiducial values of parameters ◊̂ and a fiducial noise realization ‘̂g by

”̂g = ”g[”̂, ◊̂] + ‘̂g . (3)

Note that ” is an independent variable that does not depend in ◊, even though it is drawn from a Gaussian distribution
with the variance P (k, ◊). The normalization in Eq. (2) is such that

⁄
D”̂g L[”̂g|”, ◊] = 1 . (4)

Ultimately, we are interested in the posterior for cosmological parameters given some realization of the observed
galaxy density field. This posterior is obtained by integrating the likelihood multiplied by the prior on initial conditions
”. We will assume that ” has a Gaussian distribution with the variance given by the linear power spectrum P (k).
Defining p(◊) to be the prior on cosmological parameters, the posterior is expressed as

P[◊|”̂g] = normalization ◊

⁄
D” exp

3
≠

1
2

⁄

k

|”(k)|2
P (k) ≠

1
2

⁄

k

|”̂g(k) ≠ ”g[”, ◊](k)|2
P‘

4
◊ p(◊) , (5)

where we have now included the normalization of the prior in the overall factor. In what follows we will set p(◊) = 1 for
simplicity and having in mind situations in which constraints on cosmological parameters are dominated by the data.
This choice does not change any of our conclusions and if needed the e�ect of the prior p(◊) can be straightforwardly
included in all our equations. Note that, contrary to our starting point, the power spectrum P (k) does not depend on
◊. It is easy to see why there is no loss of generality in making this assumption. Indeed, consider the case in which
P = P (k, ◊), which is the case of interest in cosmology. It is then possible to perform the following change of variables
”(k) æ ”(k)/P 1/2(k, ◊). In terms of the new integration variables the prior is a normalized Gaussian with unit power
spectrum, and all dependence of parameters is in the forward model. In the rest of the paper we will not need such a
drastic change of variables. It is enough to use

”(k) æ ·(k, ◊) ”(k) , with ·(k, ◊) = M(k, ◊)
M(k, ◊̂)

, (6)

where M(k, ◊) is the linear transfer function which relates the primordial potential to ” (for the amplitude of the
linear field A, we simply have ·(k, ◊) = A/Â). In this way the prior for the new ” field is a normalized Gaussian with
power spectrum equal to the fiducial linear power spectrum, which exactly agrees with Eq. (5).

The main di�culty in calculating the posterior is to carry out the integral in Eq. (5). In general, this cannot be
done analytically and one has to rely on numerical sampling of the likelihood.4 In most of the paper we will focus
on the limit of small noise, relevant for dense spectroscopic samples on large scales. In this case one can expand the
posterior in P‘ which simplifies calculations significantly. For the time being we focus only on the leading order in the
P‘ æ 0 limit, in which the posterior becomes

P[◊|”̂g] = normalization ◊

⁄
D” exp

3
≠

1
2

⁄

k

|”(k)|2
P (k)

4
”(Œ)

D

1
”̂g ≠ ”g[”, ◊]

2
, (7)

where the normalization is now only that of the prior and, in the same way as P (k), it does not depend on ◊ (hence
we will drop it from now on to keep the notation as contained as possible). We leave the discussion of higher orders in
P‘ for Section IV B. In order to exploit the delta function in the integrand of the posterior, we can do the following
change of variables ” æ ”g. The posterior can be then witten as

P[◊|”̂g] =
⁄

D”g

----
ˆ”

ˆ”g

---- exp
3

≠
1
2

⁄

k

|”[”g, ◊](k)|2
P (k)

4
”(Œ)

D
(”̂g ≠ ”g) © eTr ln J[”̂g,◊]≠ 1

2
‰2

prior
[”̂g,◊] , (8)

4
A simple analytical solution exists only if the forward model is linear in the initial conditions. In this case the integrand is Gaussian in ”
and the integral can be solved to obtain a well-known expression for the posterior in linear theory. We also refer to [32] for a discussion

of how to carry out the path integral by expanding around a saddle point found numerically. Ref. [95] instead discusses the saddle point

in the high noise limit.
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where the two terms in the final result, one coming from the prior and the other one coming from the Jacobian, are
denoted by ‰2

prior
and J respectively. More explicitly

‰2

prior
[”̂g, ◊] ©

⁄

k

|”[”̂g, ◊](k)|2
P (k) , and J [”̂g, ◊] ©

----
ˆ”[”g, ◊]

ˆ”g

----
”g=”̂g

. (9)

As expected, the final result depends on the realization of the galaxy density field ”̂g and parameters ◊. The key
ingredient needed to find the posterior P[◊|”̂g] is the inverse of the forward model ”[”g, ◊], which allows us to compute
‰2

prior
and J . Finding ”[”g, ◊] is in general a very di�cult task. However, in perturbative forward modeling the inverse

model is also perturbative and can be calculated analytically. The full posterior can be then consistently computed up
to a given power of the variance of the density field, which resembles the more familiar loop expansion for correlation
functions. Such posterior can be used to do cosmological inference without the need to run MCMC, and on large scales
it is guaranteed to lead to optimal constraints on cosmological parameters. We will show a few explicit perturbative
examples throughout the paper.

Before proceeding, let us add two more comments about Eq. (8). First, we are assuming that the change of variables
is one-to-one: in other words, we consider only the saddle point in the likelihood connected to linear theory. Other
solutions will be present if the forward model is pushed to short scales (e.g. due to shell crossing, see Ref. [96] for a
discussion), but on large scales the assumption of a single solution is correct. The second observation regards the
change of variables itself: we invert ” = ”≠1

g [”g, ◊] for varying ◊. Indeed, the Dirac delta in Eq. (7) is a Dirac delta in
a space of dimension equal to the number of Fourier modes of the linear field (as is clear from the expression of the
Gaussian likelihood, which involves an integral in d3k). Hence, even if ”g = ”̂g we do not obtain ” = ”̂: we do so only
if ◊ = ◊̂. The procedure is the same as what done in Ref. [94], in which similar calculations were carried out in the
context of constraints on local primordial non-Gaussianity from higher-order statistics of the CMB.

B. Posterior in the perturbative forward model

In order to derive explicit expression for the posterior P [◊|”̂g], we will assume that the perturbative forward model can
be written as

”g(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n) Xn(◊; p1, . . . , pn) ”(p1) · · · ”(pn) ©

+Œÿ

n=1

”(n)

g (k) , (10)

where Xn are perturbation theory kernels. Note that the whole dependence on cosmological parameters is in the
kernels Xn. For example, this is the form of the nonlinear density field in Eulerian perturbation theory and for biased
tracers. Since we assume that the only parameter in the theory is the variance of the density field, there are no large
displacements in this ansatz. This can be achieved in practice by the appropriate choice of the power spectrum for
which the velocity dispersion is small.

With our assumptions the forward model can be inverted perturbatively on large scales, i.e.

”(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n)Yn(◊; p1, . . . , pn)”g(p1) · · · ”g(pn) ©

+Œÿ

n=1

�[n]

g (k) , (11)

where the Yn kernels can be calculated in term of the original nonlinearities Xn. Up to cubic order, they are given by

Y1(◊) = X≠1

1
(◊) , (12a)

Y2(◊; p1, p2) = ≠X≠3

1
(◊)X2(◊; p1, p2) , (12b)

Y3(◊; p1, p2, p3) = 2
3X≠5

1
(◊)

5
X2(◊; p1, p2 + p3)X2(◊; p2, p3) + X2(◊; p2, p1 + p3)X2(◊; p1, p3)

+ X2(◊; p3, p1 + p2)X2(◊; p1, p2) ≠
3
2X1(◊)X3(◊; p1, p2, p3)

6
. (12c)

Notice that in all the examples discussed in this paper we will consider only multiplicative parameters, for which the
transfer functions, and hence the kernels X1 and Y1, are scale-independent. In more general cases, one has to keep
track of the ratio of transfer functions as in Eq. (6) when deriving the inverse kernels Yn. The inverse model defines

r

k [h/Mpc]

one-loop

On largest scales dynamics simplifies
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it is guaranteed to lead to optimal constraints on cosmological parameters. We will show a few explicit perturbative
examples throughout the paper.

Before proceeding, let us add two more comments about Eq. (8). First, we are assuming that the change of variables
is one-to-one: in other words, we consider only the saddle point in the likelihood connected to linear theory. Other
solutions will be present if the forward model is pushed to short scales (e.g. due to shell crossing, see Ref. [96] for a
discussion), but on large scales the assumption of a single solution is correct. The second observation regards the
change of variables itself: we invert ” = ”≠1

g [”g, ◊] for varying ◊. Indeed, the Dirac delta in Eq. (7) is a Dirac delta in
a space of dimension equal to the number of Fourier modes of the linear field (as is clear from the expression of the
Gaussian likelihood, which involves an integral in d3k). Hence, even if ”g = ”̂g we do not obtain ” = ”̂: we do so only
if ◊ = ◊̂. The procedure is the same as what done in Ref. [94], in which similar calculations were carried out in the
context of constraints on local primordial non-Gaussianity from higher-order statistics of the CMB.

B. Posterior in the perturbative forward model

In order to derive explicit expression for the posterior P [◊|”̂g], we will assume that the perturbative forward model can
be written as

”g(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n) Xn(◊; p1, . . . , pn) ”(p1) · · · ”(pn) ©

+Œÿ

n=1

”(n)

g (k) , (10)

where Xn are perturbation theory kernels. Note that the whole dependence on cosmological parameters is in the
kernels Xn. For example, this is the form of the nonlinear density field in Eulerian perturbation theory and for biased
tracers. Since we assume that the only parameter in the theory is the variance of the density field, there are no large
displacements in this ansatz. This can be achieved in practice by the appropriate choice of the power spectrum for
which the velocity dispersion is small.

With our assumptions the forward model can be inverted perturbatively on large scales, i.e.

”(k) =
+Œÿ

n=1

⁄

p1,...,pn

(2fi)3”(3)

D
(k ≠ p1···n)Yn(◊; p1, . . . , pn)”g(p1) · · · ”g(pn) ©

+Œÿ

n=1

�[n]

g (k) , (11)

where the Yn kernels can be calculated in term of the original nonlinearities Xn. Up to cubic order, they are given by

Y1(◊) = X≠1

1
(◊) , (12a)

Y2(◊; p1, p2) = ≠X≠3

1
(◊)X2(◊; p1, p2) , (12b)

Y3(◊; p1, p2, p3) = 2
3X≠5

1
(◊)

5
X2(◊; p1, p2 + p3)X2(◊; p2, p3) + X2(◊; p2, p1 + p3)X2(◊; p1, p3)

+ X2(◊; p3, p1 + p2)X2(◊; p1, p2) ≠
3
2X1(◊)X3(◊; p1, p2, p3)

6
. (12c)

Notice that in all the examples discussed in this paper we will consider only multiplicative parameters, for which the
transfer functions, and hence the kernels X1 and Y1, are scale-independent. In more general cases, one has to keep
track of the ratio of transfer functions as in Eq. (6) when deriving the inverse kernels Yn. The inverse model defines

12

is given by

1
2‰2

prior
= 1

2

⁄

k

”̂g(k)”̂g(≠k)
P (k) + A

⁄

k,p
Y2(p, k ≠ p) ”̂g(p)”̂g(k ≠ p)”̂g(≠k)

P (k)

+ 1
2A2

⁄

k,p1,p2

Y2(k ≠ p1, p1)Y2(≠k ≠ p2, p2) ”̂g(p1)”̂g(k ≠ p1)”̂g(p2)”̂g(≠k ≠ p2)
P (k)

+ A2

⁄

k,p1,p2

Y3(k ≠ p1 ≠ p2, p1, p2) ”̂g(≠k)”̂g(p1)”̂g(p2)”̂g(k ≠ p1 ≠ p2)
P (k) .

(46)

The Jacobian term is simpler and it has the following form

Tr ln J = 3A2

⁄

k,p
Y3(p, ≠p, k)”̂g(p)”̂g(≠p) ≠ 2A2

⁄

k,p
Y2(p, k ≠ p)Y2(≠p, k)”̂g(p)”̂g(≠p) . (47)

Note that the leading terms that correspond to the linear theory do not depend on A, in agreement with the
expectation that all information on the amplitude of ” comes from the nonlinearities. Given the simple dependence of
the log-posterior on A, it is possible to explicitly write down the optimal estimator

E = ≠
1

2 quadr

⁄

k,p
Y2(p, k ≠ p) ”̂g(p)”̂g(k ≠ p)”̂g(≠k)

P (k) . (48)

The numerator is the only term in the log-posterior linear in A, while in the denominator we collect all other quadratic
and quartic combinations of data ”̂g which are all proportional to A2. More precisely, we write

(≠ ln P) = (≠ ln P)(0) + A (≠ ln P)(1) + A2 (≠ ln P)(2)¸ ˚˙ ˝
© quadr

+ · · · (49)

Given the realization of data both the numerator and the denominator can be computed easily since they are just
numbers. This means that in practice one can use the exact posterior to find the constraints on cosmological parameters.

However, in order to get a better understanding of the optimal estimator and simplify equations, it is convenient to
replace the denominator by its average, assuming that it does not vary significantly between the di�erent realizations
of data. The modified estimator is given by

Ẽ = ≠
1

2 ÈquadrÍ

⁄

k,p
Y2(p, k ≠ p) ”̂g(p)”̂g(k ≠ p)”̂g(≠k)

P (k) . (50)

From now on, we will use the tilde to denote such “simplified” estimators. In our example, the explicit form of the
denominator evaluated at leading order in perturbation theory is

ÈquadrÍ = V

⁄

k,p

5
Y 2

2
(p, k ≠ p)P (p)P (|k ≠ p|)

P (k) + 2Y2(p, k ≠ p)Y2(≠p, k)P (p)
6

. (51)

Note that the contributions to prior and Jacobian with cubic kernels Y3 exactly cancel when taking the average. It is
then easy to explicitly check that the estimator is unbiased, ÈẼÍ = 1, calculating the tree-level galaxy bispectrum and
remembering that X2 = ≠Y2 in this example. Finally, computing the variance of Ẽ or using the one-loop expression
for the Fisher matrix from the previous section, we find that the error on A is given by

1
‡2

A

= 2V

⁄

k,p

5
X2

2
(p, k ≠ p)P (p)P (|k ≠ p|)

P (k) + 2X2(p, k ≠ p)X2(≠p, k)P (p)
6

. (52)

Note that 1/‡2

A = 2ÈquadrÍ. This is expected since ÈquadrÍ is the expectation value of all the terms in the negative
log-posterior which are proportional to A2 and therefore equal to the Fisher matrix for the amplitude A.

Three comments are in order. First, it is clear from the expression for the error that the degeneracy between b1 and
A is broken only by nonlinearities. The right hand side of Eq. (52) has the typical size of V

s
k P 1-loop(k)/P (k). This

is an explicit example in which we can see that the loop counting in forward modeling works the same way as in the
conventional analyses, as discussed above. Since we are always working at the one-loop order, we expect ‡2

A to be
exactly the same as the error in the standard joint one-loop power spectrum and tree-level bispectrum analysis, as we
will demonstrate soon.

The exact same error as for P+B analysis 
in the same model!

Model with b1 and A only:



Preliminary!

Why is this puzzling?
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