Indirect Detection of the Minimal Dark Matter 5-plet: Present and Future Directions

Alessandro Dondarini

(University of Pisa & INFN)

Based on an ongoing project with:

G. Armando, M. Aghaie, S. Bottaro, D. Gaggero, G. Marino & P. Panci

Dark Matter: Motivations at Every Scale

Rotation Curves (~10 kpc)

Clusters of Galaxies (~few Mpc)

CMB & Large Scale Structures (~the Universe)

DM as a Thermal Relic: Freeze-Out

The Prototypical WIMP

a.k.a. Minimal Dark Matter (arXiv:hep-ph/0512090)

Minimal Dark Matter

Consider a generic EW multiplet:

$$\chi \equiv \mathbf{1}_{c}, \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \dots \\ \chi_{n} \end{pmatrix} \bigg\} SU(2)_{EW} \text{ and } Y.$$
(1)

The DM candidate is the neutral component of the n-plet, χ^0 .

- DM stability: DM is the lightest component of the multiplet
- Still Allowed: DM cannot have tree-level couplings to the Z boson strong limits from Direct Detection
- Free parameter: the DM mass. Can be fixed by requiring the correct relic abundance!

A closer look to real WIMPs (odd n and Y=0)

$$\begin{aligned} \mathscr{L}_{\rm s} &= \frac{1}{2} \left(D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left(i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{aligned}$$

Real Scalar

Majorana Fermion

For $n \neq 3$ multiplets DM stability is achieved by enforcing a Z2 symmetry For $n \ge 5$ multiplets DM stability comes from an accidental Z2 symmetry

We focus on the smallest accidentally stable MDM multiplet: the **Majorana 5-plet**

MDM & Thermal Freeze-Out

$$\frac{dn_{\rm DM}}{dt} + 3Hn_{\rm DM} = \langle \sigma v_{\rm rel} \rangle (n_{\rm eq}^2 - n_{\rm DM}^2)$$

DM Abundance is fully controlled by the annihilation cross-section

$$\sigma v_{\rm rel} = \frac{g_2^4(2n^4 + 17n^2 - 19)}{256\pi g_{\chi} M_{\chi}^2} \qquad \begin{array}{l} {\rm Tree-level} \\ {\rm cross-} \\ {\rm section} \end{array} \qquad {\rm True \ but... \ Inaccurate!} \end{array}$$

Important Nonperturbative & Nonrelativistic effects modify the annhilation cross-section

- Sommerfeld Enhancement
- Bound State Formation

SE & BSF

Sommerfeld: Long Range Effects modify the DM wave function

 $\chi^0 \chi^0 \to V V$

$$S = \left|\frac{u(\infty)}{u(0)}\right|^2 \Rightarrow \langle \sigma v_{rel} \rangle = S \langle \sigma v_{rel} \rangle_0$$

Sommerfeld factor

BSF: DM forms Bound state via the emission of a gauge boson

$$\chi_i \chi_j \to BS V^a$$

BSs further annihilates in SM particles!

$$\begin{split} & \underset{\mathrm{DM}_{i}}{\overset{\mathrm{DM}_{i'}}{\dots}} \underbrace{\frac{\int_{M_{i'}}{M_{i'}}}{\int_{M_{j'}}{\dots}} \underbrace{\frac{\int_{W^{a}}{W^{a}} \underbrace{\frac{1}{W^{a}} \underbrace{\frac$$

SE & BSF: Results

NLO

MDM: Detection Strategies

• Direct Detection:

EW multiplets within the reach of next-generation experiments

• Collider Searches:

Will probe small multiplets in the future. A final word from a future µ-Collider?

From arXiv:2107.09688

MDM: Detection Strategies

• Direct Detection:

EW multiplets within the reach of next-generation experiments

• Collider Searches:

Will probe small multiplets in the future. A final word from a future µ-Collider?

Indirect Detection:

Can already offer valuable information!

The annhilation products can shower/decay/hadronize in stable SM particles (photons in our case)

DM Photon Spectrum

Choice of the Targets

profile)

Current Constraints: spectrum at lowenergy (~ hundreds of GeV)

FERMI-LAT measurements of the Galactic Diffuse can set stringent constraints on the 5-plet

Exploiting the interplay of BSF continuum & SE

Focus on two Regions of Interest (ROIs)

Current Constraints: spectrum at lowenergy (~ hundreds of GeV)

Extreme Changes of the DM profile can still mitigate the exclusion!

Future Constraints: spectrum at highenergy (~ tens of TeV)

Future Constraints: spectrum at highenergy (~ tens of TeV)

 $\mathcal{L}_{sys}(\kappa) = \prod_{i=1}^{N} \max_{J} \left[\mathcal{L}_{i}(\kappa) \times \mathcal{L}^{J} \right],$

$$\mathcal{L}^{J} = \frac{1}{\ln(10)J_{\text{obs}}} \mathcal{G}(\log_{10} J | \log_{10} J_{\text{obs}}, \sigma_{\log_{10} J_{j}})$$

Extract the upper limit on the observation time (including the systematic error on the J-factor!)

Conclusions

- Dark Matter as a WIMP remains one of the main motivation for new physics at the multi-TeV scale.
- Minimal Dark Matter is the prototype model of WIMP: huge predictivity,few parameters.
- The photon spectrum of the 5-plet shows smoking-gun signatures for the detection.
- Present data on the galactic diffuse can already place stringent constraints on the MDM 5-plet, particularly on the continuum from BSF.
- Future Telescopes such as CTA will be able to probe the model in the next decades by pointing the detectors towards dSphs (Few hours needed!)

A closer look to real WIMPs (odd n and Y=0)

$$\begin{aligned} \mathscr{L}_{\rm s} &= \frac{1}{2} \left(D_{\mu} \chi \right)^2 - \frac{1}{2} M_{\chi}^2 \chi^2 - \frac{\lambda_H}{2} \chi^2 |H|^2 - \frac{\lambda_{\chi}}{4} \chi^4 \\ \mathscr{L}_{\rm f} &= \frac{1}{2} \chi \left(i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi} \right) \chi \,, \end{aligned}$$

Real Scalar

Majorana Fermion

For $n \neq 3$ multiplets DM stability is achieved by enforcing a Z2 symmetry For $n \ge 5$ multiplets DM stability comes from an accidental Z2 symmetry

But... Higher Dimensional Z2breaking operators are expected

$$\mathscr{L}_{s} \supset \frac{C_{1}^{(s)}}{\Lambda_{UV}^{n-4}} \chi(H^{\dagger}H)^{\frac{n-1}{2}} + \frac{C_{2}^{(s)}}{\Lambda_{UV}^{n-4}} \chi W_{\mu\nu} W^{\mu\nu} (H^{\dagger}H)^{\frac{n-5}{2}} + \dots + \frac{C_{w}^{(s)}}{\Lambda_{UV}^{n-4}} \chi (W_{\mu\nu} W^{\mu\nu})^{\frac{n-1}{4}} + \frac{C_{3\chi}^{(s)}}{\Lambda_{UV}} \chi^{3} H^{\dagger} H,$$

$$\mathscr{L}_{f} \supset \frac{C_{1}^{(f)}}{\Lambda_{UV}^{n-3}} (\chi HL) (H^{\dagger}H)^{\frac{n-3}{2}} + \frac{C_{2}^{(f)}}{\Lambda_{UV}^{n-3}} (\chi \sigma^{\mu\nu} HL) W_{\mu\nu} (H^{\dagger}H)^{\frac{n-5}{2}} + \dots + \frac{C_{w}^{(f)}}{\Lambda_{UV}^{n-3}} (\chi HL) (W_{\mu\nu} W^{\mu\nu})^{\frac{n-3}{4}} + \frac{C_{3\chi}^{(f)}}{\Lambda_{UV}^{3}} \chi^{3} HL$$

MDM: State of the Art

From arXiv:2107.09688

DM spin	EW n-plet	M_{χ} (TeV)	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$	$\Lambda_{\rm Landau}/M_{\rm DM}$	$\Lambda_{\rm UV}/M_{\rm DM}$
Real scalar	3	2.53 ± 0.01	_	2.4×10^{37}	$4 \times 10^{24*}$
	5	15.4 ± 0.7	0.002	$7 imes 10^{36}$	3×10^{24}
	7	54.2 ± 3.1	0.022	$7.8 imes 10^{16}$	2×10^{24}
	9	117.8 ± 15.4	0.088	$3 imes 10^4$	2×10^{24}
	11	199 ± 42	0.25	62	1×10^{24}
	13	338 ± 102	0.6	7.2	2×10^{24}
Majorana fermion	3	2.86 ± 0.01	—	2.4×10^{37}	$2 \times 10^{12*}$
	5	13.6 ± 0.8	0.003	$5.5 imes 10^{17}$	3×10^{12}
	7	48.8 ± 3.3	0.019	1.2×10^4	1×10^8
	9	113 ± 15	0.07	41	1×10^8
	11	202 ± 43	0.2	6	1×10^8
	13	324.6 ± 94	0.5	2.6	1×10^8

MDM: State of the Art

From arXiv:2107.09688

DM spin	EW n-plet	M_{χ} (TeV)	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$	$\Lambda_{ m Landau}/M_{ m DM}$	$\Lambda_{ m UV}/M_{ m DM}$
Real scalar	3	2.53 ± 0.01	_	2.4×10^{37}	$4 \times 10^{24} *$
	5	15.4 ± 0.7	0.002	$7 imes 10^{36}$	3×10^{24}
	7	54.2 ± 3.1	0.022	7.8×10^{16}	2×10^{24}
	9	117.8 ± 15.4	0.088	$3 imes 10^4$	2×10^{24}
	11	199 ± 42	0.25	62	1×10^{24}
	13	338 ± 102	0.6	7.2	2×10^{24}
Majorana fermion	3	2.86 ± 0.01	_	2.4×10^{37}	$2 \times 10^{12*}$
	$\int 5$	13.6 ± 0.8	0.003	5.5×10^{17}	3×10^{12}
	7	48.8 ± 3.3	0.019	$1.2 imes 10^4$	1×10^8
	9	113 ± 15	0.07	41	1×10^8
	11	202 ± 43	0.2	6	1×10^8
	13	324.6 ± 94	0.5	2.6	1×10^8

Focus on the Fermionic 5-plet: pure accidental stability