Scalar Rayleigh Dark Matter

Collider and Cosmological Probes, Present and Future

Giulio Marino

(Università di Pisa, INFN)

In collaboration with: Barducci, Buttazzo, Dondarini, Franceschini, Mescia, Panci

TPPC - Theory retreat | 2024

Motivation

- Even if DM is neutral under EM \Rightarrow interactions with EW gauge bosons via higher dimensional operators • From the DM photon EET classification in [1] we analyze offective interactions involving a real scalar EW singlet
- From the DM-photon EFT classification in [1] we analyze effective interactions involving a real scalar EW singlet dark matter particle with SM EW gauge bosons

$$\mathscr{L}_{\phi} = \tilde{\mathscr{C}}_{B} \phi^{2} B_{\mu\nu} B^{\mu\nu} + \tilde{\mathscr{C}}_{W} \phi^{2} W$$
$$\mathscr{L}_{\phi} = \phi^{2} \left(\tilde{\mathscr{C}}_{\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + \tilde{\mathscr{C}}_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + \tilde{\mathscr{C}}_{\gamma Z} Z_{\mu\nu} Z^{\mu\nu} \right)$$

First operators that appear

in the EFT expansion

TPPC - Theory retreat | 2024

[1] B. J. Kavanagh, P. Panci, and R. Ziegler JHEP 04 (2019) 089, [arXiv:1810.00033]

Motivation

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathcal{G})

 \Rightarrow Loop suppressed cross sections

TPPC - Theory retreat | 2024

Interesting target for Indirect Detection probes • DM annihilates with γ

• FERMI works only up to $\mathcal{O}(500 \text{ GeV})$

									•	٥	•	•	•	
				e	٠	•	٠	•	٠	•	•	•		
			٠	•	٠	٠	٠	٠	•	•	•	•	•	
	٥		٠	•	•	٠	٠	٠	•	•	•			
	ø	•	٠	٠	•	٠	•	•	•	•	•	•		
	9	•	٠	٠	•	٠	٠	•	•	•	•	•		
	٠	e	٠	•	٠	٠	٠	٠	•	•	•	•	•	
		٥	٠	•	•	٠	٠	•	•	•	•	•		
					٠	٠	•	•	٠	•	•	•	•	

Motivation

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathcal{G})

 \Rightarrow Loop suppressed cross sections

• DM annihilates with γ

• FERMI works only up to $\mathcal{O}(500 \text{ GeV})$

How do we test this scenario at colliders?

FCCee - FCChh - μC

Could provide additional information about the model in the coming years.

TPPC - Theory retreat | 2024

Interesting target for Indirect Detection probes

									٠	٠	•	•	•	
				•	•	•	•	•	•	•	•	•		
			•	•	•	•	•	•	•	•	•	•	•	
	ũ	•	•	•	•	•	•	•	•	•	•			
	0		٠	•	•	•	•	•	•	•	•	•		
	0	•	•	٠	•	•	•	•	•	•	•	•		
	•		•	•	•	•	•	•	•	•	•	•	•	
		٠	•	•	•	•	•	•	•	•	•	•		
						0		•		•	•	•	•	

UV completion?

EFT VALIDITY

For all the probes we require that $\Lambda > q > 2m_{\rm DM}$

TPPC - Theory retreat 2024

.

TPPC - Theory retreat 2024

- DM is produced in association with a high p_T^γ
- Recast the ATLAS analysis
- Work with LO Parton level for signal simulation

		ATLAS: 2011.05259										
7 SRs defined with increasing MET												
$E_T^{\gamma} > 1$	$E_T^{\gamma} > 150 \text{ GeV}$ and $ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37$											
SRI1	SRI2	SRI3	SRI4	SRE1	SRE2	SRE3						
> 200	> 250	> 300	> 375	200 - 250	250-300	300-350						

Projections for high-lumi LHC

- Assume only statistical uncertainties and same selections of ATLAS analysis
- 95% CL bound with $\frac{N_S}{\sqrt{N}}$ rescaling the expected SM events by lumi ratio

Validity of the EFT

 $\mathscr{L}_{\phi}^{strong} = \tilde{C}_{B}^{\phi} \phi^{2} B_{\mu\nu} B^{\mu\nu} + \tilde{C}_{W}^{\phi} \phi^{2} W_{\mu\nu} W^{\mu\nu}$

we require that $p_T^{\gamma} < \Lambda$

lections of ATLAS analysis I events by lumi ratio

- DM is produced in association with a high p_T^{γ}
- Recast the ATLAS analysis
- Work with LO Parton level for signal simulation

Validity of the EFT

 $\mathscr{L}_{\phi}^{strong} = \tilde{C}_{B}^{\phi} \phi^2 B_{\mu\nu} B^{\mu\nu} + \tilde{C}_{W}^{\phi} \phi^2 W_{\mu\nu} W^{\mu\nu}$

we require that $p_T^{\gamma} < \Lambda$

•
$$pp \rightarrow jj\phi\phi$$

- Unlike the DY process, W boson contributes to the signal rate
- Selection of ATLAS search ATLAS: 2011.05259

$$p_T^{j_1,j_2} > 80 \,\text{GeV}$$
 and $|\eta_j| < 4.5$, $\eta_{j_1}\eta_{j_2} < 0$, $\Delta \eta_{j_1,j_2} > 3.8$

To kill the QCD bkg : $\Delta \phi_{j_1 j_2} < 2$, $E_T^{\text{miss}} > 160 \,\text{GeV}$

• Most stringent signal region:

 $E_T^{\text{miss}} > 200 \,\text{GeV}, \Delta \phi_{ii} < 1, m_{ii} \in [2, 3.5] \,\text{TeV}$

Projections for high-lumi LHC

- Assume only statistical uncertainties and same selections of ATLAS analysis
- 95% CL bound with <u>_____</u> rescaling the expected SM events by lumi ratio

TPPC - Theory retreat 2024

TPPC - Theory retreat | 2024

TPPC - Theory retreat | 2024

TPPC - Theory retreat 2024

TPPC - Theory retreat | 2024

After LHC era

.

FCC-hh: DY process - @ 80/100 TeV with $L = 30 ab^{-1}$

- Process assumed to be qualitatively the same as ATLAS mono- γ
- Hard photon ⇒ different analysis wrt the soft photon analysis already done
- The $pp \to Z\gamma, Z \to \nu\bar{\nu}$ channel is the dominant bkg
- $\Rightarrow \sim 60\%$ of the total yield $(bkg)_{\nu}^{ATLAS}/(bkg)_{tot}^{ATLAS}$
- LO simulation with MadGraph for ν channel in the fiducial regions given by ATLAS
 - We find that the LO $Z\gamma$ simulation accounts for $\sim 80\%$ of the experimental $Z\gamma$ ATLAS background and hence $\sim 50\%$ of the total experimental background \Rightarrow this is constant in all the ATLAS signal regions;
 - We estimate the total SM bkg multiplying by a factor 2 the dominant $Z\gamma$ bkg computed using MadGraph;
- Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

2

FCC-hh: VBS - @ 80/100 TeV with $L = 30 ab^{-1}$

- We leverage the bkg estimation of the 13 TeV ATLAS search
- We consider the signal region of the ATLAS search
- Z boson bkg accounts for 1/3 of the total bkg rate.
- We compute EW Z production at LO (Madgraph)
 - overestimates the ATLAS results by approximately a factor 2.
 - Probably due to the lack of additional jet radiations in our calculation, which would be voted in the fiducial regions defined by ATLAS.
- We thus estimate the total SM bkg at FCC-hh by multiplying a factor **3/2** the rate computed at LO as to match the ATLAS results at 13 TeV.
- m_{ii} is a key variable for selection criteria and maximize the sensitivity
- As expected by the topology of the VBS process the best sensitivity is achieved:
 - i) fixing $p_{T,i}^{\min}$ and increasing η^{\max}
 - ii) fixing η^{\max} and decreasing $p_{T,i}^{\min}$

2

FCC-hh: VBS - @ 80/100 TeV with $L = 30 ab^{-1}$

- We leverage the bkg estimation of the 13 TeV ATLAS search
- We consider the signal region of the ATLAS search
- Z boson bkg accounts for 1/3 of the total bkg rate.
 - 1. We do something similar to the estimation in the DY case
 - 2. We estimate the total SM bkg at FCC-hh by multiplying a factor 3/2 the rate computed at LO as to match the ALTAS results at 13TeV
 - Probably due to the lack of additional jet radiations in our calculation, which would be voted in the fiducial regions defined by ATLAS.
- We thus estimate the total SM bkg at FCC-hh by multiplying a factor 3/2 the rate computed at LO as to match the ATLAS results at 13 TeV.
- m_{ii} is a key variable for selection criteria and maximize the sensitivity
- As expected by the topology of the VBS process the best sensitivity is achieved:
 - i) fixing $p_{T,i}^{\min}$ and increasing η^{\max}
 - ii) fixing η^{\max} and decreasing $p_{T,i}^{\min}$

TPPC - Theory retreat | 2024

Lepton Colliders eeeeeee

FCC-ee: DY process

- \bullet Z-pole running in Tera-Z mode to probe the scale Λ
- DM produced in association with an energetic photon
- Strongest sensitivity from on-shell Z
- The dominant bkg is $e^+e^-
 ightarrow \gamma
 u ar{
 u}$
- Baseline cuts: $|\eta| < 2.5$ and $p_T^{\gamma} > 5$ GeV.

, We maximize the sensitivity $rac{N_S}{\sqrt{N_B}}$ adding a cut on P_T^γ

DY at $e^+e^ \sqrt{s} = m_Z$ $\tilde{\mathcal{C}}_{\mathcal{W}} = 0$													
	$\mathcal{L} = 1$	$6\mathrm{ab}^{-1}$	$\mathcal{L} = 120 \mathrm{ab^{-1}}$										
$m_{\rm DM}[{ m GeV}]$	$p_{T,\min}^{\gamma}[\text{GeV}]$	$ ilde{\mathcal{C}}_{\mathcal{B}}^{-1/2}\left[ext{GeV} ight]$	$ ilde{\mathcal{C}}_{\mathcal{B}}^{-1/2}\left[ext{GeV} ight]$										
1	37.5	3043	5036										
10	32.5	2524	4176										
20	22.5	1715	2839										
30	15	910	1505										
40	5	225	373										

З

TPPC - Theory retreat 2024

TPPC - Theory retreat | 2024

$\sqrt{s} = 10 \text{ TeV}$ $L = 10 \, ab^{-1}$

Colliders

Muon Collider: DY and VBS

DY: $\mu\mu \rightarrow \phi\phi\gamma$

- Mono- γ search with $|\eta^{\gamma}| < 2.5$
- $\nu\nu\gamma$ dominant bkg $\sigma_{\rm bkg}^{\nu\nu} \sim 4.2\,{\rm pb}$

• For
$$\tilde{C}_{W,B} \sim ~{
m TeV^{-2}} \, \sigma_{
m sig} \sim 0.1 \, {
m pb}$$

• Cuts over p_T^{γ} and maximize the reach

mono- γ DY,	$\sqrt{s} = 10 \mathrm{TeV}$	$ ilde{\mathcal{C}}_{\mathcal{W}} = 0 \mu \mathrm{C} \ (\mathcal{L} = 10 \mathrm{ab}^{-1})$
$m_{ m DM}[{ m GeV}]$	$p_{T,\mathrm{min}}^\gamma \left[\mathrm{GeV} ight]$	$ ilde{\mathcal{C}}_{\mathcal{B}}^{-1/2}\left[ext{GeV} ight]$
200	3000	10541
1000	2800	9440
2000	2300	7177
4000	900	1841

4

$\sqrt{s} = 10 \text{ TeV}$ $L = 10 ab^{-1}$

Colliders

Muon Collider: DY and VBS

VBS: $\mu\mu \rightarrow \mu\mu\phi\phi$

- \bullet Two forward muons, with a small polar angle wrt beam direction 1,2
- $|\eta_{\mu^{\pm}}| < 7, \Delta R(\mu^{+}\mu^{-}) > 0.4, p_{T}^{\mu\mu} > 50 \,\text{GeV}, \operatorname{sign}(\eta_{\mu^{+}}\eta_{\mu^{-}}) < 0, E_{\mu^{\pm}} > 500 \,\text{GeV}$
- Main bkg from $\nu\nu\mu\mu$?
 - No! Also $\mu\mu\gamma$, $\mu\mu f\bar{f}$, $\mu\mu WW$, but for MIM>1.5 TeV

 $\text{MIM} = \sqrt{\Delta p_{\mu} \Delta p^{\mu}}, \Delta p^{\mu} = (\sqrt{s}, \vec{0}) - p_{\mu^{+}} - p_{\mu^{-}})$

The $\nu\nu$ channel is about the 15% of the total bkg.

M. Ruhdorfer, E. Salvioni, and A. Wulzer Phys. Rev. D 107 (2023), no. 9 095038, [arXiv:2303.14202]
 M. Ruhdorfer, E. Salvioni, and A. Wulzer arXiv:2411.00096.

4

TPPC - Theory retreat | 2024

TPPC - Theory retreat | 2024

14

FERMI and **CTA**

- FERMI 15 yrs of data
- •Rol41 region: Most profile
- DM annihilation into $\gamma\gamma$, γZ

TPPC - Theory retreat 2024

Conclusion

"Near" Future Colliders (FCCee, HL-LHC):

- Will place more stringent bounds on this dark matter scenario;
- FCCee gives one of the most stringent bound, but only for small DM mass;
- HL-LHC bounds will not be significantly greater than current LHC ones. \bullet

Conclusion

Indirect and Direct Detection:

Current bounds (e.g., FERMI) and future projections (e.g., XLZD) will remain \bullet competitive, if not stronger, than FCCee or HL-LHC.

Conclusion

"Next" Future (FCChh and μC):

- Will be able to probe much higher energy scales;
- Could provide crucial insights into this dark matter benchmark. \bullet

THANK YOU

		٠	•	•	٠	•	•		•	•								
٥	0	٠	٠	•	٠	٠	٠	•	•	•				٠				
v		٠	•	٠	٠	•	•	•	•	•	•							
9	•	٠	٠	٠	٠	٠	•	•	•	•	٠							
٠		٠	•	٠	٠	•	•	•	•	•	•	•						
	٥	٠	٠	٠	٠	٠	•	•	•	•	•		•			٠	•	
				•	0	٠	٠	•	•	•	•	•	٠	٠				

									٠	٠	٠	٠	•	•	•	•	•	•
				e		٠	٠	٠	•	٠	•	•						
			•		•	٠	•	٠	•	•	•	•	•					
	ŵ	0	0	٠	•	٠	٠	٠	•	•	•			•				
	0		٠	٠	•	٠	•	•	•	•	•	•						
	٠		•	٠	•	•	•	•	•	•	•	•						
	ę		٠		•	٠	•	٠	•	•	•	•	•					

TPPC - Theory retreat | 2024

. . . .

.

Backup Slides

.

.

• •

Yukawa model $\mathscr{L} = \lambda \phi \bar{\psi}_L l_R + h \, . \, c \, .$

 ϕ is DM candidate EW singlet, l is RH SM lepton and ψ is a BSM $SU(2)_L$ singlet with $Y_{\psi} = -1$

TPPC - Theory retreat | 2024

TYPE I

Yukawa model

 10^{5}

 10^{4}

 10^{3}

 10^{2}

10

[GeV]

J W

· · · ·

[1] D. d'Enterria, M. A. Tamlihat, L. Schoeffel, H.-S. Shao, and Y. Tayalati Phys. Lett. B 846 (2023) 138237

$\mathscr{L} \supset -\frac{1}{2\Lambda_R} R_{\mu\nu} \left[c_1 T^{(F)}_{\mu\nu} + c_2 T^{(\phi)}_{\mu\nu} \right]$

Bound for the production of the massive spin 2 particle¹ rescaling the branching ratio $R \rightarrow \gamma \gamma$

