
Ring laser gyros:
skew-Hermitian coupling

from system-bath interaction

Francesco Giovinetti1,2

1Dip. di Fisica ”Ettore Pancini”,
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RLG as an open quantum system

Inspired by Mecozzi’s article [1], we want to describe a RLG as an open
quantum system via a quantum Langevin equation approach.



RLG as an open quantum system (OQS)

We want to build a model for a ring laser gyroscope (RLG) that includes
(at least) the following properties:

the optical cavity supports two counter-propagating modes of
frequencies ω0 ± Ω0

2 ; Ω0 is the Sagnac frequency;

EM modes interact with the environment (power leaks through the
mirrors);

back-scattering is taken into account;

the modes interact with a gain medium represented by N two-level
atoms with transition frequency Ω;

the atoms are subject to stimulated emission and are driven into an
inverted state by an appropriate pumping.



RLG as an OQS: features

We choose to work in the following setting:

we adopt the Heisenberg picture approach;

bath operators associated to different noise ports commute;

we assume that the rotating-wave approximations and the Markovian
assumptions are legit;

the N atoms are identical (however, they can be distinguished by their
position in the gain medium);

the interaction between each atom and the incoming EM field does
not depend on the polarization or direction of the incoming field
(spherical symmetry) so the atom-field coupling constants depend
only on the mode;



RLG as an OQS: features

We introduce the following (total) Hamiltonian:

H = HS + HB + HSB , (1)

where:

HS = HEM
S + HAtoms

S + HEM+Atoms
S + Hb.s.

S , (2)

HB = HEM
B + Hs.e.

B + Hp.
B , (3)

HSB = HEM
SB + Hs.e.

SB + Hp.
SB . (4)

Note that both the EM-modes and the atoms constitute the open
subsystem of our-interest.



RLG as an OQS: the Hamiltonian

EM-terms:

HEM
S =

(
ω0 +

Ω0

2

)
a†a+

(
ω0 −

Ω0

2

)
b†b, (5)

Hb.s.
S =??? (6)

HEM
B =

∫ +∞

0
dω ωd†

a(ω)da(ω) + (a↔ b), (7)

HEM
SB ≈ i

∫ +∞

−∞
dωκa(ω)

(
d†
a(ω)a− a†da(ω)

)
+ (a↔ b). (8)

with κa(ω) ≈
√

γa
2π , κb(ω) ≈

√
γb
2π , γa, γb > 0.



RLG as an OQS: the Hamiltonian

Atomic terms:

HAtoms
S = −

N∑
i=1

Ω

2
σz,i , (9)

HEM+Atoms
S =

N∑
i=1

{
ga,i

(
f ∗a (r⃗i )σia

† + fa(r⃗i )σ
†
i a
)
+ (a↔ b)

}
, (10)

Hs.e.
B =

N∑
i=1

∫ +∞

0
dω ωl†i (ω)li (ω), Hp.

B =
N∑
i=1

∫ +∞

0
dω ωh†(ω)h(ω),

(11)

Hs.e.
SB ≈ i

∫ +∞

−∞
dω

N∑
i=1

mi (ω)
(
l†i (ω)σi − σ†

i li (ω)
)
, mi (ω) ≈

√
Γl
π

(12)

Hp.
SB ≈ i

∫ +∞

−∞
dω

N∑
i=1

pi (ω)
(
hi (ω)σi − σ†

i h
†
i (ω)

)
, pi (ω) ≈

√
Γp
π

(13)



RLG as an OQS: quantum Langevin equations

Neglecting the back-scattering, we arrive at the following QLEs:

d

dt
a = −i

(
ω0 +

Ω0

2

)
a− γa

2
a− iga

N∑
i=1

f ∗a (r i )σi +
√
γadin,a, (14)

d

dt
b = −i

(
ω0 −

Ω0

2

)
b − γb

2
b − igb

N∑
i=1

f ∗b (r i )σi +
√
γbdin,b, (15)

d

dt
σi = −iΩσi − (Γl + Γp)σi − i [gafa (r i ) a+ gbfb (r i ) b]σz,i + B−

in,i ,

(16)

d

dt
σz,i =2 (Γl − Γp) I− 2 (Γl + Γp)σz,i + Bz

in,i

+2i
[
ga
(
fa (r i ) aσ

†
i − f ∗a (r i )σia†

)
+ gb

(
fb (r i ) bσ

†
i − f ∗b (r i )σib†

)]
(17)



Introducing the back-scattering

In order to describe the back-scattering from corner mirrors, we want to
introduce another contribution to the Hamiltonian. We assume that it is
given by a linear combination of the following operators of the following
form:

a†b, b†a (18)

The ansatz is motivated by the fact that these operators describe the
annihilation of a photon and the creation of another in the opposite
direction. Moreover, they conserve the total number of photons in the
cavity: [

a†b, a†a+ b†b
]
=
[
b†a, a†a+ b†b

]
= 0 (19)



Introducing the back-scattering: hermitian Hamiltonian

The only Hermitian linear combination of the previous operators is given
by:

Hb.s.
S = i

(
κma

†b − κ∗mb
†a
)
, (20)

where κm = |κm|e iφm is an arbitrary complex coupling parameter.
Neglecting all other interaction terms and noises for simplicity, the
back-scattering Hamiltonian modifies the QLEs for the mode operators:

d

dt
a = −i

(
ω0 +

Ω0

2

)
a+ κmb, (21)

d

dt
b = −i

(
ω0 −

Ω0

2

)
b − κ∗ma, (22)



Introducing the back-scattering: hermitian Hamiltonian

Defining:

α = ⟨a⟩ = |α|e iφa , β = ⟨b⟩ = |β|e iφb , (23)

∆φ = φb − φa + φm, (24)

we see that:

d∆φ

dt
= Ω0 − |κm|

(
|β|
|α|
− |α|
|β|

)
sin∆φ (25)

This equation is not in accord with the phenomenology!
In particular, if |α| = |β|, it is impossible to recover the lock-in!



Introducing the back-scattering:
skew-hermitian Hamiltonian

In order to recover the expected behaviour of the system, we ”just” need
to replace κ∗ with −κ∗ in eq. (86), hence also in (6):

Hb.s.
S = i

(
κma

†b + κ∗mb
†a
)
. (26)

The associated evolution equation for the frequency difference is of the
form expected from the (semi-)classical theory:

d∆φ

dt
= Ω0 − |κm|

(
|β|
|α|

+
|α|
|β|

)
sin∆φ (27)

Note that the new Hamiltonian is skew-Hermitian!

Hb.s.
S

†
= −Hb.s.

S (28)

However this is not surprising if we look at classical equations...



Wilkinson’s classical equations for a RLG

In Wilkinson’s review [2] the classical equations of motion of a RLG are
derived. The coupling of the modes is due to their interaction with the
same ”intracavity medium”, so it is described in terms of the Fourier
components of the susceptibility. For single-mode operation:

dE+n

dt
=− i

Ω0

2
E+n +

i

2
χ+
0 ωnE+n +

i

2
χ−
2nωnE−n, (29)

dE−n

dt
=+ i

Ω0

2
E−n +

i

2
χ−
0 ωnE−n +

i

2
χ+
−2nωnE+n, (30)

In this approach the susceptibilities describe all the system components
that interact with the modes, e.g. the active medium, the mirrors, ecc.



Wilkinson’s classical equations for a RLG

The derivation of eqs. (29) and (30) require the following assumptions:

1. all the high-order Fourier expansion terms of the rotation parameter
are neglected (i.e. the form of the RLG is not relevant);

2. slow rotation, hence all quadratic terms in the rotation parameter are
neglected;

3. slowly evolving envelop for the electromagnetic field, so we neglect
the second order time derivatives of the electromagnetic field (in the
rotated frame) and all first order time derivative of the
electromagnetic field multiplied to small expansion parameters;

4. single-mode operation, i.e. we assume that only two modes are
relevant, in particular those associated to the same ”unperturbed”
frequency (e.g. the main resonant frequency of the cavity).



Wilkinson’s classical equations for a RLG: couplings

In [2] the time evolution of the phase difference θ is given by:

where X is the log difference of the mode amplitudes and T , Ks , Kh are
constant coupling parameters. In particular:

They are called hermitian and skew-Hermitian couplings, respectively.



Wilkinson’s classical equations for a RLG: Kh = 0

Note that for X = 0, Kh = 0, the evolution equation for θ is completely
determined by Ks and is equivalent in form to eq. (27). The associated
time-averaged beat-frequency has the expected behavior:



Wilkinson’s classical equations for a RLG: Kh = 0

For X = 0, Kh = 0, the intensities of the modes are completely in phase,
hence energy is not conserved:

The modes exchange energy with the medium at the same rate and this
leading to their (at least partial) synchronization.



Physical meaning of the couplings

For a reciprocal medium, i.e. χ−
+2n = χ+

−2n = χ, we see that:

Kh ∝ Re{χ} ←→ dispersion, e.g. pure dielectric material

Ks ∝ Im{χ} ←→ dissipation, e.g. pure conducting material

Even if the hermitian coupling contributes to the beat-frequency in
general, the lock-in is dictated by the skew-hermitian one.
So, dissipation plays an important role in the output response of a RLG!
Hence, if we want to retrieve the correct phenomenology of a RLG, we
need to include in our model non-Hermitian (dissipative) phenomena that
couple the modes.



Reduced non-Hermitian dynamics from Hermitian one

We want to understand how to induce a coupled non-Hermitian dynamics
of the counter-propagating modes in a RLG starting from first principles in
a quantum framework.
An hint comes from recent works [3, 4], where the link between
non-hermitian Hamiltonians and phase-synchronization is investigated. In
particular, the authors show that is possible to recover an effective
non-hermitian Hamiltonian that couples two modes starting from an
Hermitian Hamiltonian that couples them to an high-dissipative auxiliary
mode.



Phase synchronization... of pendulum clocks?

It is instructive to think to a mechanical analogue.
Two pendulum clocks hanging from a wall synchronize because of the
interaction with sound solitons propagating in the wall [5].



Skew-Hermitian coupling from system-bath interaction

Here we follow another procedure to retrieve a skew-Hermitian coupling
between the modes. In our approach, the role of the auxiliary mode in [3]
is taken by the environment. In particular the modes are coupled (a la
Caldeira-Leggett) to the same two independent external baths. The
system-bath interaction Hamiltonians are given by:

where αi = e iϕ
(a)
i , βi = e iϕ

(b)
i . Moreover, we introduce a direct (Hermitian)

interaction between the modes:

HS ,ab = i
[
κ̃ha

†b − κ̃∗hb
†a
]

(31)



Skew-Hermitian coupling from system-bath interaction

Neglecting the interaction with the atoms, the QLEs are the following:

d

dt
a(t) =− iωaa(t)−

1

2

(
γ
(a)
a + γ

(b)
a

)
a(t) + (κ̃s + κ̃h) b(t)

+

√
γ
(a)
a e−iϕ

(a)
a d

(a)
in (t) +

√
γ
(b)
a e−iϕ

(b)
a d

(b)
in (t),

(32)

d

dt
b(t) =− iωbb(t)−

1

2

(
γ
(a)
b + γ

(b)
b

)
b(t) + (κ̃∗s − κ̃∗h) a(t)

+

√
γ
(a)
b e−iϕ

(a)
b d

(a)
in (t) +

√
γ
(b)
b e−iϕ

(b)
b d

(b)
in (t),

(33)

where:

κ̃s = −
1

2

(√
γ
(a)
a γ

(a)
b e

i
(
ϕ
(a)
b −ϕ

(a)
a

)
+

√
γ
(b)
a γ

(b)
b e

i
(
ϕ
(b)
b −ϕ

(b)
a

))
. (34)



Classical equations from QLEs

Taking the expected values of eqs. (32) and (33) written in the rotating
frame, we obtain the following equations:

d

dt
α′(t) = −iΩ0

2
α′(t)− 1

2

(
γ
(a)
a + γ

(b)
a

)
α′(t) + (κ̃s + κ̃h)β

′(t), (35)

d

dt
β′(t) = +i

Ω0

2
β′(t)− 1

2

(
γ
(a)
b + γ

(b)
b

)
β′(t) + (κ̃∗s − κ̃∗h)α

′(t). (36)

A comparison with eqs. (29) and (30) shows that:

κ̃s ∝ Ks , κ̃h ∝ Kh (37)

Hence, we see that the direct Hermitian interaction between the modes
completely determine the Hermitian coupling of the classical description of
the system, while the system-bath interaction of our quantum model
reproduce the wanted skew-Hermitian coupling.



Classical equations from QLEs: phase difference evolution

Concerning the instantaneous beat-frequency, eqs. (35) and (36) lead the
following equation (at the first order in X ):

dθ

dt
= −Ω0 − 2|κ̃s | sin(θ(t)− ϕs) + 2|κ̃h|X (t) sin(θ(t)− ϕs) (38)

In the case κ̃h = 0, defining θ′ = θ + ϕs , we obtain:

dθ′

dt
= +Ω0 − 2|κ̃s | sin θ′(t) (39)

that admits explicit analytical solutions.



Classical equations from QLEs: beat-frequency

In particular, if the Sagnac frequency is below the lock-in frequency:

ΩL = 2|κ̃s | (40)

the equation admits a stationary solution, i.e. perfect synchronization in
phase is reached and the beat note frequency vanish.
When |Ω0| > ΩL, eq. (39) admits periodic solutions for θ′(t). The inverse
of the period gives the time averaged beat-frequency. It’s absolute value is:

ΩB =
√
Ω2
0 − Ω2

L (41)

This is precisely the expected classical behavior we have shown before.



”Complete” QLEs for a RLG

In [2] the classical equations take into account the presence of the active
medium from the start via the explicit expression of the susceptibility
parameters, derived assuming a semi-classical interaction between the field
and the atoms.
In our case we separately introduce the interaction in a full quantum
framework via a Jaynes-Cummings model. The resulting QLEs are more
involved, however their physical interpretation remain simple.
In the following we only display the QLE for the annihilation operator of a
single EM mode interacting with an ensemble of N atoms evenly
distributed between two different species.



”Complete” QLEs for a RLG

d

dt
a(t) =− i

(
ω0 +

Ω0

2

)
a(t)− 1

2

(
γ
(a)
a + γ

(b)
a

)
a(t) + (κ̃s + κ̃h) b(t)

− igaa

N/2∑
i=1

f ∗a (r i )σi − igab

N∑
i=N/2+1

f ∗a (r i )σi

+

√
γ
(a)
a e−iϕ

(a)
a d

(a)
in (t) +

√
γ
(b)
a e−iϕ

(b)
a d

(b)
in (t)

Via the adiabatic elimination of the atomic variables, already in the case of
identical ”close by” atoms, it is possible to see that the interaction with
the active medium induces further skew-Hermitian coupling terms between
the modes and additional decay [1].



Conclusions

We have seen that the the back-scattering terms in the QLE
necessarily come from an effective non-Hermitian coupling between
the counter-propagating modes;

in particular, the skew-Hermitian coupling is responsible for the
lock-in effect; this could been seen as an example of synchronization
in non-hermitianly coupled systems;

skew-hermitian coupling between two modes can be implemented via
a standard coupling between the modes and the same two thermal
baths;

the expected values of the QLEs obtained in this way are in agreement
with the standard classical equations (in particular those in [6]).



Next steps

We need to study the classical equations associated to the QLEs of
the complete model (comprising the interaction with the active
medium);

the noise contribution to the measured beat-frequency needs to be
investigated;

a possible approach is the one detailed in Gardiner and Zoller (2020)
[7] (asymptotic expansion, stationary solutions, Schrodinger picture
equivalent...).
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Back-up slides



Quantum Langevin equation: an overview

Inspired by Mecozzi’s work, we want to propose a RLG model describing it
as an open quantum system.
We will adopt a formalism analogous to that of C. Gardiner, and P. Zoller
(2020) [7], starting from the introduction of the Hamiltonian of the
system and then working out the associated quantum Langevin equations
for the system operators.

In order to clarify the physical motivation behind the final equations, we
will briefly review the quantum Langevin equation approach, then we will
separately introduce the dynamics of various sub-systems constituting the
RLG in our model (e.g. EM modes, the atoms ...)



Quantum Langevin equation: an overview

Open quantum system =⇒ H = HS ⊗ HB

total Hilbert space

(open sub-)system Hilbert space

environment Hilbert space

We adopt the Heisenberg picture. We are (primarily) interested in time
evolution of system operators a(t) when dim(HB) >> dim(HS):

a(t) ∈ L (H) : a(t0) ≡ a ⊗ IB ⇒ d

dt
a(t) = ???

a ∈ L (HS)

IB ∈ L (HB) identity operator on HB



Quantum Langevin equation: an overview

We start from the Liouville equation:

d

dt
a(t) = i [H, a] (42)

where H = H† ∈ L (H) is the Hamiltonian.
We assume the following decomposition:

H = HS + HB + HSB , (43)

contains system operators only

contains bath operators only

contains products of system and bath operators



Quantum Langevin equation: an overview

In particular, we describe the system-bath interaction through the
Caldeira-Leggett model in the rotating-wave approximation (single port):

HB =

∫ +∞

0
dω ωd†(ω)d(ω), (44)

HSB = i

∫ +∞

−∞
dω κ(ω)

[
d†(ω) c − c† d(ω)

]
(45)

c(t) : a case-dependent system operator

{d(ω)} : a set of frequency-dependent bath operators

[
d(ω), d†(ω′)

]
= δ(ω − ω′),

[
d(ω), d(ω′)

]
= 0 (46)



Quantum Langevin equation: an overview

The Liouville equation (42) for bath operators is:

d

dt
d(ω, t) = i [H, d(ω, t)] = −iωd(ω, t) + κ(ω)c(t) (47)

whose formal solution is:

d(ω, t) = d(ω, t0)e
−iω(t−t0) + κ(ω)

∫ t

t0

dt ′e−iω(t−t′)c(t ′) (48)

to be substituted in the Liouville equation for a general system operator a:

d

dt
a(t) = i [H, a(t)] (49)



Quantum Langevin equation: an overview

Under the Markovian assumption:

κ(ω) ≈
√

γ

2π
, γ > 0 (50)

and defining the input noise operator:

din(t) = −
1√
2π

∫ +∞

−∞
dω e−iω(t−t0)d(ω, t0) (51)

we obtain the following quantum Langevin equation (QLE):

d

dt
a(t) =i [HS , a] +

(γ
2
c†(t)−√γd†

in(t)
)
[a, c]

− [a, c†]
(γ
2
c(t)−√γdin(t)

) (52)

This equation is easily generalizable to the case of a system coupled to the
environment through multiple independent noise ports.



QLE for a harmonic oscillator (1)

A single harmonic oscillator (e.g. an EM mode of a cavity) is described by
the following Hamiltonian:

HS ,HO = ω0a
†a (53)

where the creation and annihilation operators are defined by the following
commutation relations:

[a, a†] = 1, [a, a] = 0 (54)

In particular, choosing c = a, we obtain the following QLE:

d

dt
a(t) = −iω0a(t) −

γ

2
a(t) +

√
γdin(t) (55)

”free” evolution term

damping term

noise term



QLE for a system coupled to an amplifier

If the environment behaves as an amplifier, i.e. it pumps energy into the
system, we can describe it as an inverted heat bath [7]:

HB,inv = −
∫ +∞

0
dω h(ω)h†(ω), (56)

HSB,inv = i

∫ +∞

0
dω ωp(ω)

[
h†(ω, t)c(t)− c†(t)h(ω, t)

]
(57)[

h†(ω), h(ω′)
]
= δ(ω − ω′) (58)

Under Markov approximation:

d

dt
a(t) =i [HS , a] +

(
−γp

2
c†(t)−√γph†in(t)

)
[a, c]

−
[
a, c†

] (
−γp

2
c(t)−√γphin(t)

) (59)

Note that other amplifier models (e. g. phase conjugating amplifier) differ
only for the noise terms.



QLE for a harmonic oscillator (2)

For a harmonic oscillator coupled to both a regular (dissipative) and an
inverted (pumping) heat bath, choosing c = a for both the noise ports, the
QLE for the annihilation operator a are given by:

d

dt
a(t) = −iω0a(t) +

γp − γl
2

a(t) + nin(t) (60)

where:
nin(t) =

√
γldin(t) +

√
γphin(t) (61)

Equation (60) can be formally solved:

a(t) = a(t0)e
(−iω0+

γp−γl
2

)(t−t0) +

∫ t

t0

dt ′e(−iω0+
γp−γl

2
)(t−t′)nin(t

′) (62)

The mode is amplified or damped depending on the sign of γp − γl .



QLE for two cavity EM modes (1)

We consider two electromagnetic (EM) modes in a cavity, with associated
annihilation operators a and b ([a, b] =

[
a, b†

]
= 0). We assume that they

not interact with each other and that they are coupled to independent
(bosonic) dissipative reservoirs (ca = a, cb = b). The QLEs are given by:

d

dt
a(t) = −iωaa(t)−

γa
2
a(t) +

√
γadin,a(t), (63)

d

dt
b(t) = −iωbb(t)−

γb
2
b(t) +

√
γbdin,b(t) (64)



QLE for two cavity EM modes (2)

For a closed two-mode optical cavity, in general there is a non-zero
probability that the corner mirrors scatter the light of a mode in the
direction of propagation of the other, inducing an indirect interaction
between the modes (back-scattering). The simplest way to implement
such an interaction is through the following Hamiltonian:

HS,ab = i
[
κma

†b − κ∗mb
†a
]

(65)

that modifies the eqs. (63) and (64) in the following way:

d

dt
a(t) = −iωaa(t)−

γa
2
a(t) + κmb +

√
γadin,a(t), (66)

d

dt
b(t) = −iωbb(t)−

γb
2
b(t)− κ∗ma+

√
γbdin,b(t) (67)

Note:
[
HS ,ab, a

†a+ b†b
]
= 0 (the total number of photons is conserved).



QLE for an atom (1)

A simple model of an atom is that of a two level system.
The corresponding system-Hamiltonian is given by:

HS,atom = −Ω

2
σz (68)

where:
σz(t0) = |0⟩ ⟨0| − |1⟩ ⟨1| (69)

We also define the lowering operator and its conjugate:

σ(t0) = |0⟩ ⟨1| , σ†(t0) = |1⟩ ⟨0| (70)



QLE for an atom (1)

The atomic spontaneous emission can be introduced through an
appropriate bath-system interaction Hamiltonian, where we set c = σ.

The resulting QLE equations for σ and σz are given by:

d

dt
σ = −iΩσ − Γσ +

√
2Γσz lin, (71)

d

dt
σz = 2ΓI− 2Γσz − 2

√
2Γ
(
l†inσ + σ†lin

)
(72)

where the damping terms have been evidenced.

Note that multiplicative noise terms appear in the equation and the input
noise operator does not commute with system operators in general.



QLE for an atom (2)

A pumped atom can be modeled as a two-level system interacting with an
inverted bath, choosing again c = σ. Including both the effect of the
amplifier and of the spontaneous emission, we obtain the following QLEs:

d

dt
σ = −iΩσ − (Γl + Γp)σ + B−

in , (73)

d

dt
σz = 2 (Γl − Γp) I− 2 (Γl + Γp)σz + Bz

in (74)

where Γl > 0 and Γp > 0 are the dissipation and amplification constants,
and:

B−
in (t) =

√
2Γlσz lin +

√
2Γphinσz , (75)

Bz
in(t) = −2

√
2Γl

(
l†inσ + σ†lin

)
− 2
√

2Γp
(
hinσ

† + σh†in

)
. (76)



Atom-EM mode interaction

To describe the interaction between an EM-mode (e.g. a) and a single
atom we choose the following Hamiltonian (Jaynes-Cummings model):

Ha
S ,JC = ga

[
fa (r) aσ† + f ∗a (r)σa†

]
(77)

where ga ∈ R is a coupling constant and fa (r) is the normalized spatial
mode profile of the mode a evaluated at the position of the atom r inside
the optical cavity [8, 7]. The resulting QLEs are:

d

dt
a(t) = −iωaa(t)−

γa
2
a(t)− igaf

∗
a (r)σ +

√
γadin,a(t), (78)

d

dt
σ = −iΩσ − (Γl + Γp)σ − igafa (r) aσz + B−

in , (79)

d

dt
σz = 2 (Γl − Γp) I− 2 (Γl + Γp)σz + 2iga

[
fa (r) aσ† − f ∗a (r)σa†

]
+ Bz

in

(80)



Frequency pulling and lock-in

...



A model for the RLG: two atomic species

In real He-Ne RLGs two isotopes of Neon are present in a 50:50 mixture,
in order to stabilize both the modes in the cavity.
Accordingly, we can modify the previous equations letting the atomic
parameters to be atom dependent. In particular:

Ω→ Ωi =

{
Ωa i = 1, ..., N2
Ωb i = N

2 + 1, ..., N2
(81)

and similar substitutions for the other parameters.

However, if all atoms interact with both the EM modes, the detuning
frequencies cannot all vanish simultaneously. Moreover, extra
time-exponentials appear and they cannot be absorbed by rotating-frame
transformations.



A model for the RLG: quantum Langevin equations (1)

A form of the QLEs similar to the ones in Mecozzi’s paper is achieved with
the following assumptions:

atomic resonance frequency is exactly given by the mean resonance
frequency of the cavity, i.e. ∆ = ω0 − Ω = 0 (the detuning frequency
vanishes);

we perform rotating-frame transformations on the operators a, b and
σ substituting:

a(t)→ a(t)e−iω0t , b(t)→ b(t)e−iω0t , σ(t)→ σ(t)e−iω0t ;

we assume: γa = γb = γ, ga = gb = g ;

we define: Rp = 2N(Γp − Γl), Γ = 1
2τ = Γl + Γp;

(cont.)



RLG as an OQS: more assumptions...

we define the collective variables:

σ− =
1

N

N∑
i=1

σi , n = Nσ3 = −
N∑
i=1

σz,i (82)

we re-define the noise terms:

sa(t) = din,a(t), sb(t) = din,b(t), (83)

√
2NΓs−(t) =

N∑
i=1

B−
in,i (t),

√
2NΓsn(t) = −

N∑
i=1

Bz
in,i (t); (84)

the spatial profiles of the two-modes are those of counter-propagating
plane waves;

the atoms are ”not too far apart from each other”, so we can
factorize the terms depending the position of the atoms.



RLG as an OQS: quantum Langevin equations (2)

The resulting equations are the following:

d

dt
a = −iΩ0

2
a− γ

2
a− ige−i k⃗a·r⃗Nσ− +

√
γsa(t), (85)

d

dt
b = +i

Ω0

2
b − γ

2
b − ige+i k⃗b·r⃗Nσ− +

√
γsb(t), (86)

d

dt
σ− = −Γσ− + ig(e+i k⃗a·r⃗a+ e−i k⃗b·r⃗b)σ3 +

√
2Γ

N
s−(t), (87)

d

dt
n = Rp −

n

τ
+
√
2ΓNsn(t) + i2gN

[
(e−i k⃗a·r⃗a† + e+i k⃗b·r⃗b†)σ− − h.c .

]
(88)

The equations are similar to those in Mecozzi’s paper (there is an extra
noise term in the last equation and different parameters).



Non-Hermitian Hamiltonians: when?

We want to justify the introduction of a non-hermitian Hamiltonian from
first principles. We list here some considerations:

in literature, approaches to open quantum systems can be found that
make use of non-hermitian Hamiltonians, in particular for
PT-symmetric systems, quantum scattering [6, 9]) ...;

... Moreover the standard literature on RLGs seems suggesting this
approach [2];

if we assume that both under time inversion and parity
transformations a and b go one into the other, the back-scattering
Hamiltonian is PT -symmetric for φm = ±π

2 ; it is never T -symmetric;

this Hamiltonian hide an interaction between mirrors and EM modes,
that in principle is dissipative...;

... however we are implicitly supposing that a photon is either not
affected or is scattered exactly into the opposite-travelling mode
(total photon number is conserved, no-photons scattered in
”unwanted” directions).



Phase synchronization in non-hermitian systems

A recent paper [4] suggests that there is a deep link between
non-hermitian Hamiltonians and phase-synchronization, in general.

Note that both the lock-in and the frequency pulling (above threshold) are
essentially phase-synchronization phenomenona induced from
non-hermitian couplings [2]. So, could be interesting to study in more
detail the correlation between the beams in a RLG from the point of view
of non-Hermitian couplers.

In particular, it is interesting that it is possible to recover an effective
non-hermitian Hamiltonian of the form we are interested in from a
standard hermitian system.



Non-Hermitian Hamiltonians: how?

The usual QLEs for a set of N annihilation operators:

d

dt
ai (t) = i [HS , ai (t)]− γia(t) + n

(in)
i (t) (89)

where HS = H†
S and are equivalent to the following ones:

d

dt
ai (t) = i [HNH , ai (t)] + n

(in)
i (t) (90)

where:
HNH = HS − i

∑
i

γia
†
i ai (91)

i.e., we are introducing imaginary frequency components to take into
account the dissipation.
Note that HNH ̸= H†

NH , however it has a physical meaning.



Non-Hermitian Hamiltonians: how?

The Hamiltonians HNH we are interested in are of the following form:

HNH = Ψ†hΨ, (92)

where:

Ψ =


a1
a2
...
aN

 , h =

ω1 − iγ1 g12 ...
g21 ω2 − iγ2 ...
... ... ...

 , g∗
ij = gji . (93)

The QLEs are given by:

dΨ

dt
= −ihΨ(t)− βin(t) (94)

where βin(t) is an appropriately defined noise term.



Non-Hermitian Hamiltonians: how?

It is possible to show [3] that every unitary operator S = S† acting on the
system Hilbert space HS in the following way:

SΨS† = UΨ, U = U† ∈ MN(C) (95)

define an evolution equation equivalent to the previous one. It is given by:

dΨ

dt
= −i h̃Ψ(t)− U†βin(t), h̃ = U†hU (96)

It is in the form of a QLE with the following system Hamiltonian:

H̃NH = Ψ†h̃Ψ (97)

Note that g̃∗
ij ̸= g̃ji , in general. Therefore, we can still make sense of some

Hamiltonians with non-hermitian couplings.



Phase synchronization in non-hermitian system

The idea of [3, 4] is the following.
Consider an open system S made of two bosonic modes, namely 1 and 2.
The modes are hermitianly coupled to each other and to the same
auxiliary mode 0. If the auxiliary mode is high-dissipative, the subsystem S
can be equivalently described as a non-hermitian system in which modes 1
and 2 are non-hermitianly coupled and possibly synchronize.



Non-Hermitian systems from hermitian ones

In [3] the author shows two alternative ways to formally reduce a
three-mode hermitian system to a two-mode non-hermitian one:

performing a Schrieffer-Wolff transformation that effectively decouple
the auxiliary mode from the others;

performing an adiabatic elimination of the auxiliary mode.

In both cases the underlying assumption is that the auxiliary mode is
high-dissipative.



Schrieffer-Wolff transformation from three to two modes

Consider the following Hamiltonian:

H =
2∑

i=0

(ωi − iγi )a
†
i ai +

∑
i<j

gij

(
a†i aj + a†j ai

)
(98)

where gij ∈ R. Assuming gi0 >> g12 and γ0 >> γi , |ωi − ω0| ∀i , it is
possible to show that up to second order in gi0, the Hamiltonian H is
unitary equivalent to the following one:

H̃ = (ω̃0 − i γ̃0)a
†
0a0 +

∑
i=1,2

(ω̃i − i γ̃i )a
†
i ai + g̃12

(
a†1a2 + a†2a1

)
(99)

where g̃∗
12 ̸= g̃21, in general:

g̃12 = g12 +
g01g02

2

∑
i=1,2

1

(ωi − ω0)− i(γi − γ0)
(100)



Schrieffer-Wolff transformation from three to two modes

In summary:

a transformation can be found from a three-mode hermitian system
to an effective non-hermitian two-mode system;

the transformation form H to H̃ can be identified with a
Schrieffer-Wolff unitary transformation up to some order in a
perturbative expansion of the parameters;

strong coupling between the auxiliary high-dissipating mode and the
other ones is required.

However:

a careful inspection of the equivalence of the two description is needed
since the Schrieffer-Wolff transformation is not exactly unitary ;

moreover, the effect of the transformation on other interaction terms
is needed (e.g. EM field- atoms);

an analysis of the noise terms is needed.



Adiabatic elimination of the auxiliary mode

Consider again the following Hamiltonian:

H =
2∑

i=0

(ωi − iγi )a
†
i ai +

∑
i<j

gij

(
a†i aj + a†j ai

)
, gij ∈ R. (101)

Assuming vanishing expectation values for the noise terms, the associated
classical Langevin equations are given by:

dαi

dt
= −γiαi − igiλe

−i∆i0t , (102)

dλ

dt
= −γ0λ− i(g∗

1α1e
i∆10t + g∗

2α2e
i∆20t), (103)

where g0i = gi , ∆i0 = ω0 − ωi , ⟨ai ⟩ = αie
−iωi t , ⟨a0⟩ = λe−iω0t . In the

following i + 1 = 2 for i = 1 and i + 1 = 1 for i = 2.



Adiabatic elimination of the auxiliary mode

Equation (103) can be formally solved. Assuming that γ0 >> γi , we
obtain:

λ(t) = − ig∗
1

i∆10 + γ0
α1(t)−

ig∗
2

i∆20 + γ0
α2(t) (104)

and substituting in eq. (102) we get:

dαi

dt
= −

(
γi +

|gi |2

γ0 + i∆i0

)
αi (t)−

gig
∗
i+1

γ0 + i∆(i+1)0
αi+1(t) (105)

The above equations obtained as the classical equivalent of the QLEs
associated to an effective two-mode Hamiltonian H̃ with new parameters.



Adiabatic elimination of the auxiliary mode

In particular, if γ0 >> ∆i0:

g̃12 = −i
g1g

∗
2

γ0
= −g̃∗

21 (106)

i.e., we obtain an effective skew-Hermitian coupling between the modes.

It is interesting to note that the coupling constants found via the
Schrieffer-Wolff transformation eq. (100) and adiabatic elimination
eq. (106) coincide in the limit γ0 >> γi and g1, g2 ∈ R.



Adiabatic elimination of the auxiliary mode

In summary:

we have seen that adiabatic elimination of a high-dissipative auxiliary
mode lead to an effective non-hermitian interaction between the
modes in the remaining subsystem;

additional assumptions lead to the same type of skew-Hermitian of
the Schrieffer-Wolff transformation;

this technique is standard and is the same used in [1] to derive the
coupling between the modes mediated by the gain medium;

However:

in the previous analysis the role of the noise terms is completely
neglected (but it’s easy to restore it, in principle).
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