

1.0

THE EVOLUTION OF ARTIFICIAL INTELLIGENCE

A sensationalistic overview of the history of Artificial Intelligence

Can you find the (AI)ntruder?

Credits: Jorg Karg

Credits: Boris Eldagsen

Credits: Aleksei3Andreev

Credits: Evgeny Lutsko

Can you find the (Al)ntruder?

PSEUDOMNESIA: The Electrician, 2023

Credits: Jorg Karg

Credits: Boris Eldagsen (by using DALL-E 2)

Credits: Aleksei Andreev

Credits: Evgeny Lutsko

The evolution of image generation

DCGAN (arXiv:1511.06434), 2015

Credits:

- Alec Radford
- Luke Metz
- Soumith Chintala

Sora (OpenAl text-to-video model), 2024

 ▶ PROMPT>
 A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

Chatbot, chatbot everywhere!

EVOLVING THE CNAF USER SUPPORT THROUGH AI-DRIVEN SOLUTIONS

How AI technologies can help in supporting Tier-1 users

Scientific computing at CNAF

As INFN national center dedicated to R&D on Information and Communication Technologies, CNAF host the Italian Tier-1 data center since 2003, providing computing resources to a wide scientific community:

- collaboration with 60+ experiments (not only the four major experiments of LHC)
- support to 1500+ active users accessing the Tier-1 resources (including communities different from the High Energy and Nuclear Physics one)

The Italian Tier-1 ensures support for experiments and users through the dedicated *User Support* (US) unit:

- principal contact point between users and other specialized Tier-1 units
- development of tools/procedures to simplify the access to computing resources
- preparation and updates of the Tier-1 User
 Guide (https://l.infn.it/t1quide)

- **1.** User Support unit (entry point)
- 2. involvement of other specialized units
- **3.** involvement of software developers

The Italian Tier-1 ensures support for experiments and users through the dedicated *User Support* (US) unit:

- principal contact point between users and other specialized Tier-1 units
- development of tools/procedures to simplify the access to computing resources
- preparation and updates of the Tier-1 User
 Guide (https://l.infn.it/t1quide)

- **1.** <u>User Support unit</u> (entry point)
- 2. involvement of other specialized units
- 3. involvement of software developers

The Italian Tier-1 ensures support for experiments and users through the dedicated *User Support* (US) unit:

- principal contact point between users and other specialized Tier-1 units
- development of tools/procedures to simplify the access to computing resources
- preparation and updates of the Tier-1 User
 Guide (https://l.infn.it/t1quide)

- 1. User Support unit (entry point)
- 2. involvement of other specialized units
- 3. involvement of software developers

The Italian Tier-1 ensures support for experiments and users through the dedicated *User Support* (US) unit:

- principal contact point between users and other specialized Tier-1 units
- development of tools/procedures to simplify the access to computing resources
- preparation and updates of the Tier-1 User
 Guide (https://l.infn.it/t1quide)

- 1. User Support unit (entry point)
- 2. involvement of other specialized units
- 3. involvement of software developers

Evolving the User Support using Artificial Intelligence

In the context of NRRP and thanks to the action of the ICSC and TeRABIT projects, the **Italian Tier-1** will evolve significantly in the next few years:

- acquisition of more and more users and experiments
- wide scientific community with various requirements in terms of infrastructure, hardware, and software
- need for an evolution of the CNAF data center and its units

Employing AI models to build a **Digital User Supporter** able to help in supporting a growing number of new users and in adopting the latest software technologies

Prototyping a Digital User Supporter

The process of developing an Al-powered digital agent for managing User Support duties has been organized into two parallel and complementary sub-projects:

2.1 Multi-label classification

Steps for building an email classifier

- 1 Preparation of the dataset of emails for training
- 2 Mapping of the textual features into a numerical representation (embedding)
- Classifier training using differente ML algorithms
- 4 Benchmark of the classification performance and results combination (ensemble)

A quick look at the data sample

Preparation of the training dataset

Data collection

The sample contains ~30k emails received/sent in the period 06/2017 – 05/2023

Each has been saved as an individual JSON file (~260 MB)

No attachments, and (almost) no HTML content

Each file includes:

- **from** email address
- to email address
- date datetime
- subject text
- content text
- parent email address

Anonymization

All the **email addresses** have been **anonymized** by replacing them with UUIDs

Any references to real individuals (e.g., names or usernames) found in the email subject/body have been anonymized and replaced with the placeholder [NAME]

The anonymization process was carried out using **automated scripts** or by **editing manually** the email metadata

Labelling

Each email is assigned a **label** based on the text contained in its subject/body

The **email thread** between a user and the various Tier-1 units involved is reconstructed using the information in the parent field

All labels associated to the same thread are propagated to the first contact email as a part of the labelling process

Data cleaning

The email body may contain escape sequences (e.g., \n, \t) o HTML tags

The emails are multilingual (English/Italian) and may include special characters (e.g., accented letters, emojis)

The data cleaning process transforms the text to retain only words, placeholder, and punctuation

The prepared training set

How to represent the textual features

- The meaning of a text is encoded in word combinations → ML models operate on vectors (features)
 - Word (or token) combinations can be mapped into a "representation space" (a high-dimensional vector space) through an embedding model
- The embedding model can be designed to preserve semantics, even across multiple languages
 - Sentence-Transformers is a Python framework that provides state-of-the-art models for text embedding

How emails look like in the representation space

all-mpnet-base-v2

base model: MPNet
embedding dim: 768
max seq length: 384
inference speed: 1
language: English only

all-MiniLM-L6-v2base model: Minil M

embedding dim: 384
max seq length: 256
inference speed: x5
language: English only

paraphrase-multilingual-mpnet-base-v2

base model: XLM-RoBERTa
embedding dim: 768
max seq length: 128
inference speed: ~1
language: multiple

paraphrase-multilingual-MiniLM-L12-v2

base model: MiniLM
embedding dim: 384
max seq length: 126
inference speed: x2.5
language: multiple

Performance of the trained classifiers

Different ML models were trained to perform multi-label classification

- k-Nearest Neighbors (kNN)
- Random Forest (RF)
- Extreme Gradient Boosting (XGBoost)
- Feed-forward Neural Network (FNN)

Various embedding models were used in combination with these classification models

- all-mpnet-base-v2
- all-MiniLM-L6-v2
- paraphrase-multilingual-mpnet-base-v2
- paraphrase-multilingual-MiniLM-L12-v2

Different preprocessing strategies → 4 (emb) x 4 (prep) x 4 (clf) = 64 models in total

By combining the outputs of the most promising models using an **ensemble approach**, the best performance was achieved: ~95% of ROC AUC score on the test set

2.2 Digital User Supporter

The problem of artificial hallucinations

Credits: https://fisicisenzapalestra.com/artificiale-come-lintelligenza-e-gli-allucinogeni.html

One of the major challenges in working with Al chatbots and Computer Vision tools is the issue of *artificial hallucinations*

responses that contain false or misleading information presented as facts

A potential solution to limit the "creativity" of Large Language Models (LLMs) is to integrate them into an architecture designed to **retrieve relevant information** and compose **answers based on that data**

The *Retrieval-Augmented Generation* (RAG) architecture provides a **semantic-aware pipeline** that retrieves information from a knowledge base and generates text grounded in the retrieved data

TOTYPE

The first prototype of the **Al-powered Digital User Supporter** has been developed upon a RAG model, implemented with LangChain and provisioning the LLM relying on ollama

How to build a Digital User Supporter

To retrieve relevant information from the **guide** to respond to the **user request**, we can compare the embeddings from both cases based on *similarity* (e.g., dot product)

Once the guide embeddings that best match the request embedding are identified, the **vector database** can be queried to **retrieve** the **corresponding metadata**

How to build a Digital User Supporter

The retrieved text segments are used to tailor the *template* for the textual **prompt** submitted to the **Language Model**

Answer the user's questions based on the below context as you were answering to an email in a professional style.

<context>
{context}
</context>

Retrieval-Augmented Generation (RAG)

How to build a Digital User Supporter

User au

The generated prompt can then be submitted to a *Large Language Model* (LLM), which, even if not an "expert" in a specific subject, is capable of extracting the "relevant" content from {context} and rephrasing it

Since fine-tuning is not required, LLMs are often described as **general-purpose** technologies and are thus also referred to as **Foundation Models**

val-Augmented Generation (RAG)

Summary, conclusions, and final remarks

Here are my conclusions!

- Al is reshaping the computing landscape, driving technological evolution, influencing market trends, and dominating software development worldwide
- CNAF should ride the Al wave, exploring and implementing new technologies to drive its evolution within an Al-dominated world
 - the development of a Digital User Supporter is a step in this direction, but also other units can benefit from using Al
- The results obtained with the first prototype of the **Digital User Supporter** are promising but there is still room for improvements
 - e.g., multi-expert model, enlarged knowledge base (also including emails)
- As Al companies develop increasingly large models **requiring massive GPU resources**, it is essential to implement tailored solutions
 - this is crucial to avoid that Al chatbots monopolize GPU resources needed for scientific research

Thanks!

Any questions or comments?

Matteo Barbetti (INFN CNAF)

email: matteo.barbetti@cnaf.infn.it