Neutron activation measurements at n_TOF

Michele Spelta,

A. Mengoni, S. Kopanos, M.E. Stamati, F. Garcia-Infantes, J. Lerendegui-Marco, A. Reina-Conde, A. Manna, N. Patronis, S. Goula, R. Mucciola, P. Perez-Maroto, M. Bacak, C. Lederer-Woods and **the n_TOF Collaboration**

GIANTS XII, Catania 3-4 July 2025

Introduction

n_TOF was born as a Time-Of-Flight facility (EAR1 & EAR2), but since 2021 a new **irradiation station** for activation measurements is available (**NEAR**)

Activation measurements

- To measure neutron cross sections it's needed to "count" Nr of reactions in a sample
- In activation measurements, the number of nuclei activated by the reaction of interest is counted
- 2 Steps:

INFN

- 1) Irradiation (produce unstable nuclei)
- 2) Measurement of the decay products of unstable nuclei

 $\sigma \approx \frac{N_r}{n \,\varepsilon \, N_n}$

Why Activation?

Possibility to select **specific γ-rays** in high resolution detectors (HPGe) after irradiation in **huge neutron fluxes**

High selectivity

High sensitivity

INFN

nTOF

(ng-mass-samples)

(no need of monoisotopic samples)

Advantageous for small cross sections, small-mass and/or radioactive samples

CANBERR

Energy [keV]

Why Activation?

(n, γ) cross sections on **radioactive isotopes** are important in astrophysics:

Branching points of s-process

(Accurate n, γ XS to constrain stellar parameters)

E.g. ^{134, 135}Cs (2y, 1.3My), ¹⁴⁷Pm (2.6y), ¹⁷¹Tm (702d), ⁹⁴Nb (20ky),...

i-process

NTOF

(Accurate n,γ XS to simulate i-process nucleosynthesis)

E.g. ⁶⁶Ni (55h), ⁷²Zn (47h), ¹²⁵Sb (2.8y), ¹³⁷Cs (30y), ¹⁴⁴Ce (285d), ¹⁴¹La (3.9h) ... From A. Choplin, EPJ Web of Conferences 279, 07001 (2023)

n_TOF NEAR

NEAR irradiation station is located at ≈ 3 m from spallation target and receives a neutron flux of ≈ 10⁹ neutrons/pulse. (Not only for astrophysics!)

A. Mengoni, CERN-INTC-2020-073 / INTC-I-222 (2020)

INFN

n_TOF NEAR

NEAR neutron flux has been simulated (FLUKA) and validated with **Multifoil Activation Measurements**

INFN

Quasi-Maxwellian Spectrum

Neutron spectrum needs to be shaped to a quasi-Maxwellian spectrum to get MACS:

B₄C filters (95% ¹⁰B)

INFN

nTOF

- Filter low-energy neutrons
- Thickness defines stellar temperature

- Al₂O₃ moderator (Winter 2025)
 - Shift neutron flux in the energy range of astrophysical interest

Quasi-Maxwellian Spectrum

Neutron spectrum needs to be shaped to a quasi-Maxwellian spectrum to get MACS:

B₄C filters (95% ¹⁰B)

INFN

nTOF

- Filter low-energy neutrons
- Thickness defines stellar temperature

- Al₂O₃ moderator (Winter 2025)
 - Shift neutron flux in the energy range of astrophysical interest

Current Activity at NEAR

Benchmarking the feasibility of measuring MACS at NEAR.

- **Problem: quasi-**Maxwellian spectrum, we can only measure a SACS (Spectral Average CS)
- **Solution:** Need to estimate a "universal" correction factor to convert SACS to MACS for each filter thickness

Measuring SACS and compare to calculated MACS:

¹⁹⁷Au(n,y)

⁷⁶Ge(n, γ) ¹⁴⁰Ce(n, γ) ⁹⁴Zr(n, γ)

 $^{109}Ag(n, \gamma)$

Current Activity at NEAR

Benchmarking the feasibility of measuring MACS at NEAR.

Current Activity at NEAR

Benchmarking the feasibility of measuring MACS at NEAR.

CYCLING at NEAR

for short-lived activated nuclei

NTOF

Synergy with ISOLDE for radioactive target production

n_ACT @ BDF/SHiP for very small-mass and low-XS samples

CYCLING at NEAR

- Measurement of short-lived products is now prevented by 6 h cool-down for NEAR access
- Cyclic irradiation and activation measurements in a decay station inside NEAR (CYCLIc activation for N,G measurements) would allow to measure s-min half-lives

INFN

NTOF

J. Lerendegui et al, CERN-INTC-2022-018 / INTC-I-241 (2022)

CYCLING at NEAR

INFN

Synergy with ISOLDE

- Irradiation of radioactive isotopes ideally requires Δt_{production-irradiation} < lifetime</p>
- Walking distance between NEAR and ISOLDE may be advantageous to produce and irradiate radioactive samples with lifetimes down to ≈ hours/day.
- First collaboration: Cs-135 production

n_ACT @ BDF/SHiP

INFN

nTOF

Ambitious project for **new parasitic activation stations at the future BDF** (Beam Dump Facility) for the SHiP experiment.

n_ACT @ BDF/SHiP

Combination of:

- High neutron flux (x1000 wrt NEAR)
- Vicinity to ISOLDE
- Rabbit system for moving "instantaneously" irradiated samples
- Expertise from NEAR in shaping neutron flux with filters + moderator

Unique combination to measure stellar MACS at different temperatures for radioactive and/or small-mass and/or small-cross section samples, not accessible elsewhere

e.g. (n,γ) on ⁹⁴Nb, ¹⁴⁷Pm, ¹⁶³Ho, ¹⁷¹Tm,...

2031 / 2035

INFN

Summary

- NEAR: irradiation station for activation measurements at n_TOF
- Advantageous for small-mass and/or radioactive samples (e.g. s-process branchings, i-process nuclei)
- Now testing feasibility of MACS measurements at different temperatures, with quasi-Maxwellian spectra shaped with filter (+ moderator)
- Cyclic activation and synergy with ISOLDE are planned
- Long term project (2031/35) for new parasitic irradiation stations at BDF/SHiP to reach more extreme physics cases