Recent results on neutron capture reactions at n_TOF

Riccardo Mucciola

Stellar nucleosynthesis

- Four main nucleosynthesis processes for elements heavier than iron: s-process, r-process, i-process, and p-process;
- Some isotopes, due to position in the chart of nuclides, can be synthetized only by one process;
- Possible to set constraints on intensity of the processes.

Number of neutrons 102RU -6RU 95_{Ru} 97_{Ru} 98Ru ⁹⁹Ru 100Ru 101Ru 94Ru 51.80 m 1.64 h 5.54 2.79 d 1.87 12.76 12.6 17.06 31.55 93Tc 96Tc 99TC 101Tc 94Tc 98Tc 100Tc 95Tc 97Tc 211.11 ka 2.75 h 4.88 h 20.00 h 4.28 d 4.21 Ma 4.20 Ma 15.80 s 14.22 m ⁹³Mo ⁹⁴Mo 100Mo ⁹²Mo ⁹⁵Mo ⁹⁶Mo ⁹⁷Mo ⁹⁹Mo 14.84 4.00 ka 9.25 15.92 16.68 9.55 24.13 9.63 2.75 d 92Nb ⁹³Nb 95Nb ⁹⁶Nb 99Nb 91Nh ⁹⁷Nb 98Nb 20.30 ka 34.99 d 23.35 h 680.04 a 34.70 Ma 100 1.20 h 2.86 s 15.00 s ⁹⁰Zr ⁹¹Zr 95 Zr 96Zr 977r 92₇₁ 987r 51.45 11.22 1.53 Ma 64.03 d 2.8 16.74 h 30.70 s

Presolar grain composition

- Silicon carbide (SiC) grains help to study abundance in presolar AGB;
- Abundances of elements in grains are expressed as:

$$\delta\left(\frac{{}^{95}Mo}{{}^{96}Mo}\right) = 10^3 \times \left[\binom{{}^{95}Mo}{{}^{96}Mo} / \binom{{}^{95}Mo}{{}^{96}Mo}_{\odot} - 1\right]$$

 Comparison of abundances predicted by models with observation.

Status of data in literature

- MACS uncertainty still far from 5% target for many isotopes,
- Many important isotopes for s-process still reported with significant uncertainties,
- Majority of long-lived unstable isotopes never measured,

Nuclear data still necessary today!

n_TOF facility

n_TOF @ CERN

The CERN accelerator complex Complexe des accélérateurs du CERN

n_TOF

- Located at CERN;
- Neutron beam produced using PS proton on lead target;
- Production of neutrons via spallation;
- Pulsed neutron source (10 meV < E < 1 GeV);
- Three experimental areas (EAR1, EAR2 and NEAR).

Radiative capture

Experimental observable is capture yield

- Percentage of neutrons that undergoes capture reaction in the sample
- Related to capture cross section via:

$$Y_{exp} = N \frac{C_{\gamma}(t) - B_{\gamma}(t)}{C_{\varphi}(t) - B_{\varphi}(t)} Y_{\varphi} = (1 - T) \frac{e^{-n\sigma_{\gamma}}}{e^{-n\sigma_{tot}}}$$

- Normalization factor energy and nuclide independent, obtained with Au measurement
- Background obtained with additional measurement (empty, lead)

Resonance Shape Analysis

- Determination of the resonance parameter E_0 , Γ_{γ} , Γ_n
- Simultaneous fit of transmission and capture data
- Fit performed using theoretical parametrization

Parametrization of cross section using resonance parameters

C. Massimi et al., Phys. Rev. C 85, 044615 (2012)

n_TOF capture measurements setups

EAR1

EAR2

EAR-2

Done at n_TOF

Latest measurement: a review

³⁰Si(n,γ)

- Crucial for modeling nucleosynthesis of Si (P, S);
- Understanding presolar SiC composition, mixing of GCE and ncapture;
- Produced in convective carbon-shell of massive star;
- Inconsistencies in literature data.

Courtesy: M. Spelta

³⁰Si(n,γ)

- First isotopically enriches sample used in capture!
- Absence of big resonance at 14 keV included in evaluations;
- Larger kernel than in previous measurements;
- Preliminary value of MACS intermediate between previous time-of-flight and activation measurements.

⁶⁴Ni(n,γ)

- Seed of the s-process;
- The MACS has an effect on heavier isotope production in main s-process;
- Discrepancies in MACS from activation and libraires;
- Inconsistencies in date in literature.

⁶⁴Ni(n,γ)

- Sample of only 427mg;
- Clear absence of 9,5 keV and 14,8 keV resonances reported in libraries;
- Reduction of MACS, better agreement with activation data!

^{63,65}Cu(n,γ)...

- Produced in explosive environments like Type la supernovae;
- Accurate knowledge of MACS important for nucleosynthesis in massive stars (weak s-process);
- Additional application for nuclear technologies (research reactor TAPIRO and fusion)

⁶² Ga	⁶³ Ga	⁶⁴ Ga	⁶⁵ Ga	⁶⁶ Ga	⁶⁷ Ga	⁶⁸ Ga
116.00 ms	32.40 s	2.63 m	15.20 m	9.49 h	3.26 d	1.13 h
β ⁺	β ⁺	β ⁺	β ⁺	β ⁺	β ⁺	β ⁺
⁶¹ Zn	⁶² Zn	⁶³ Zn	⁶⁴ Zn	⁶⁵ Zn	⁶⁶ Zn	⁶⁷ Zn
1.48 m	9.19 h	38.47 m	48.63	243.63 d	27.9	4.1
β ⁺	β ⁺	β ⁺	59 mb	162 mb, β ⁺	35 mb	153 mb
⁶⁰ Cu	⁶¹ Cu	⁶² Cu	63Cu	⁶⁴ Cu	65 _{Cu}	⁶⁶ Cu
23.70 m	3.33 h	9.67 m	69.17	12.70 h	30.83	5.12 m
β ⁺	β ⁺	β ⁺	94 mb	β ⁺	41 mb	β ⁻
⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni
75.99 ka	26.223	1.14	3.634	100.11 a	0.926	2.52 h
87 mb, β ⁺	30 mb	82 mb	22.3 mb	31 mb, β ⁻	8.7 mb	β ⁻
⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	⁶¹ Co	⁶² Co	⁶³ Co	⁶⁴ Co
70.86 d	100	5.27 a	1.65 h	1.50 m	27.40 s	300.00 ms
β ⁺	38 mb	β ⁻	β ⁻	β ⁻	β ⁻	β ⁻
⁵⁷ Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe	⁶² Fe	⁶³ Fe
2.119	0.282	44.50 d	1.50 Ma	5.98 m	1.13 m	6.01 s

▼ Recommended MACS30 (Maxwellian Averaged Cross Section @ 30keV)

 $^{63}Cu (n, \gamma)^{64}Cu$

Total MACS at 30keV: 60.1 ± 6.2 mb

Cross sections do not include stellar enhancement factors!

▼ History			
Version	Total MACS [mb]	Partial to gs [mb]	Partial to isomer [mb]
1.0	60.1 ± 6.2	-	-
0.3	55.6 ± 2.2	-	-
0.0	94 ± 10	-	-
() /amaiam () /) companyed to Day at		

▼ Comment

New the value is from HKU08, renormalized by 632 mb/586 mb = 1.0785, and recalculated with normalized energy dependencies of tend15,endfb71,jendH0. Uncertainty is the deviation between different evaluations plus 4% exp. uncertainty from HKU08. Note the large deviation between the activation measurement and the TOF measurements. More investigation needed! Last review. April 2017

Courtesy: N. Pieretti

^{63,65}Cu(n,γ)+(n,tot)

- Capture measurement performed in 2024 in EAR1 with enriched samples;
- First transmission campaign at n_TOF!
- Total cross section compatible with previous experiment, but possible to extend range up to several MeV!

Experiment	Sample	Protons	Comments
Capture	$^{63}\mathrm{Cu}$	2.0×10^{18}	
Capture	$^{65}\mathrm{Cu}$	$2.0 imes 10^{18}$	
Capture	$^{nat}\mathrm{Cu}$	$0.3 imes 10^{18}$	EAR1 or EAR2
Capture	Empty-sample	0.2×10^{18}	background study
Capture	Pb	0.2×10^{18}	background study
Capture	С	0.2×10^{18}	background study
Capture	$^{197}\mathrm{Au}$	0.1×10^{18}	normalization
Transmission	$^{63}\mathrm{Cu}$	1.0×10^{18}	"Sample-in"
Transmission	$^{65}\mathrm{Cu}$	$1.0 imes 10^{18}$	"Sample-in"
Transmission	Empty-sample	1.0×10^{18}	"Sample-out"
		8.0×10^{18}	

Courtesy: N. Pieretti

⁷⁹Se(n,γ)

- Branching point with direct impact on s-only isotopes ^{80,82}Kr;
- MACS only known from average parameters;
- One of the 21 key s-nuclei listed in: Kaeppeler, *Rev. Mod. Phys* 83, 157 (2011)
- Listed as 1st-level priority (two times) in the sensitivity study: Cescutti et al., MNRS 478 (2018)

Courtesy: J. Lerendegui

⁷⁹Se(n,γ)

- Production of 3mg of ⁷⁹Se from irradiation of ⁷⁸Se at ILL;
- Production of Pb-Se at PSI
- 6MBq of activity!
- Measurement at EAR2 show good signal-background ratio
- First ever directly observed resonances of ⁷⁹Se!

Courtesy: J. Lerendegui

⁸⁸Zr(n,γ)

- Very high cross section (800kb) observed at previous transmission measurement at LANL;
- Highly radioactive isotope (83d half life);
- Material produced at Los Alamos
 ⁸⁹Y(p,2n) and prepared at PSI;
- Very low mass sample!

Atoms	•	1.15e16
Mass	•	1.68 µg
Activity	•	1.1 GBq

Zr 83	88 .4 d	Zr ntigh	89 78.4 h	Zr 90 51.45			
ε γ 393		¢ β*0.9; 2.4 γ 1507; g	έ β ⁺ 0.9 γ (1713) m	σ~0.01	4		
Y	87	Y	88	Y 89			
13 h iγ 381 ^e β ⁺	80.3 h ⁶ β ⁺ γ 485 m	ε β ⁺ × 1836;	89£	16.0 s	100 er 0.001 + 1.25		
Sr 86 9.86		Si 87 2.81 h 7.00		Sr 88 82.58			
σ 0.81	+ 0.23	ly 388	o 16	or 0.005	8		

⁸⁸Zr(n,γ)

- Radioactivity from the sample (⁸⁸Zr + ⁸⁸Y from decay) not overwhelming;
- Signals from capture events clearly seen;
- Preliminary estimate of cross section shows discrepancy of resonance shape respect to DICER.

Mo(n,γ)

- Discrepancies in SiC grain composition for different isotopes;
- All stable isotopes measured at n_TOF with additional transmission @ GELINA for ^{94,95,96}Mo;
- Measurements at both areas to cover energy region from thermal up to hundreds of keV;
- Samples prepared at n_TOF.

⁹⁴ Ru	⁹⁵ Ru	⁹⁶ Ru	97 _{Ru}	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru
51.80 m	1.64 h	5.54	2.79 d	1.87	12.76	12.6	17.06	31.55
⁹³ Tc	⁹⁴ Tc	⁹⁵ Tc	96Tc	⁹⁷ Tc	⁹⁸ Tc	⁹⁹ TC	¹⁰⁰ Tc	¹⁰¹ Tc
2.75 h	4.88 h	20.00 h	4.28 d	4.21 Ma	4.20 Ma	211.11 ka	15.80 s	14.22 m
⁹² Mo	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Мо	⁹⁹ Mo	¹⁰⁰ Mo
14.84	4.00 ka	9.25	15.92	16.68	9.55	24.13	2.75 d	9.63
⁹¹ Nb	⁹² Nb	⁹³ Nb	94 _{Nb}	95 _{Nb}	⁹⁶ Nb	⁹⁷ Nb	⁹⁸ Nb	⁹⁹ Nb
680.04 a	34.70 Ma	100	20.30 ka	34.99 d	23.35 h	1.20 h	2.86 s	15.00 s
⁹⁰ Zr	⁹¹ Zr	⁹² Zr	93 _{Zr}	94Zr	95 _{Zr}	96Zr	⁹⁷ Zr	⁹⁸ Zr
51.45	11.22	17.15	1.53 Ma	17.38	64.03 d	2.8	16.74 h	30.70 s

Mo(n,γ)

- Discrepancies observed from literature for all isotopes;
- Good agreement between capture and transmission data;
- Reduction of MACS observed for ⁹⁴Mo.

...More than just (n, γ)

⁴⁰K(n,**cp**)

- Radiogenic heating of young exoplanets;
- Crucial for biosphere and habitability;
- Produced in massive stars core and in s-process;
- Only one direct measurement in literature!

⁴¹Ca(n,**α**)

- Short half lived isotope (t_{1/2}~100k years);
- Produced in massive stars and ejected in ESS material from explosions or winds;
- Produced in He and C burning phases;
- ⁴¹Ca(n,α) main destruction channel.

Conclusions

Latest updates on the facility, detection systems and sample production enabled previously very challenging measurements at n_TOF (⁷⁹Se, ⁸⁸Zr, ⁶⁴Ni);

➢ Many neutron capture cross section are still known with accuracy far from the 5% target, the use on state-of-the-art facility and detector setups can help reaching very low levbel of uncertainty (Mo, ³⁰Si,^{63,65}Cu);

Combination with activation measurements, like the one performed at NEAR, can further constrain the MACS;

Additional reaction channels crucial for astrophysics are also being explored at n_TOF for radioactive samples, exploiting the high flux of EAR2;

Thank you for your attention!

Backup

⁹⁴Mo Unresolved Resonance Region

- Calculation of the preliminary cross section in the URR (>75keV);
- Comparison with JEFF 3.3 cross section data;
- This comparison shows a reduction of 10-20% in the cross section of ⁹⁴Mo.

²⁰⁴Tl(n,γ)

- Branching point crucial for production of ²⁰⁴Pb;
- Sample of ²⁰³Tl produced at PSI, successively irradiated at ILL: 9mg of ²⁰⁴Tl;
- 180 GBq of activity!

Po 202 44.7 m ε; α 5.587 γ 689; 316; 166; 791; 717 e	Po 203 45 s 36 m (c) B ⁺ (c) 5384 (c) 909; (c) 909; (c) 942; (c) 944; (c) 944; (c) 944; (c) 944; (c) 944; (c) 94; (c) 94; (c) 94; (c) 94; (c) 94;(c)	Po 204 3.53 h ^ε α 5.377 γ 884; 270; 1016	Po 205 1.66 h «; β ⁺ α 5.22; α → g γ 872; 1001; 850; 837	Po 206 8.8 d ε; α 5.2233 γ 1032; 511; 286; 807 ε ⁻ ; g	Po 207 2.8 s 5.84 h (; β* a 5.116 y 815; 992; 288; 912; g	Po 208 2.898 a α 5.1152 ^ϵ γ (292; 571) 9	Po 209 102 a α 4.881 ϵ γ (895; 261; 263)	Po 210 138.38 d α 5.30438 γ (803); σ <0.0005 +<0.030; σ _{n,α} 0.002; σ ₁ <0.1	Po 211 25.2 s 0.516 s a 7.275; 8.883 y 570; 1064 y (896; 570)	Po 212 45.1 s 17.1 ns 0.3 µs 11.65	Po 213 4.2 μs ^{α 8.376} _{γ (779)}	Po 214 164 μs ^{α 7.6869} _{γ (800; 298)}
Bi 201 59.1 m 1.8 h 4: y 629; by 846 936; a 5.24 1014; y 7786 9 m; 9	Bi 202 1.72 h ε; β ⁺ γ 961; 422; 657 9	Bi 203 11.76 h ϵ; β* 1.4 γ 820; 825; 897; 1848 g; m	Bi 204 11.22 h [•] _{7 899; 375; 984 g; m}	Bi 205 15.31 d ^ϵ _{β+} _{γ 1764; 703; 988}	Bi 206 6.24 d [€] β ⁺ γ 803; 881; 516; 1719; 537	Bi 207 31.55 a ^ε β ⁺ γ 570; 1064; 1770	Bi 208 3.68 · 10 ⁵ a	Bi 209 100 1.9 · 10 ¹⁹ a ^a 3.137 ^c 0.011 + 0.023 _{c_ha <3E-7}	Bi 210 3.0·10 ⁶ a 5.013 d α 4.946; γ 266; γ 266; σ 0.054 266)	$\begin{array}{c} Bi \ 211 \\ 2.17 \ m \\ {}^{\alpha} \ 6.6229; \ 6.2788 \\ {}^{\beta} \\ {}^{\cdots} \\ {}^{\gamma} \ 351 \\ {}^{\alpha} \ \rightarrow \ g; \ {}^{\beta} \\ {}^{\rightarrow} \rightarrow \ g \end{array}$	Bi 212 9m 25m 60.60 m • 634: 5 · · · · · 600: 9 · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} \text{Bi 213} \\ 45.59 \text{ m} \\ \beta^{-} 1.4 \\ \alpha 5.87 \\ \gamma 440; (293; \\ 1100) \end{array}$
Pb 200 21.5 h ^ε γ 148; 257; 236; 268	Pb 201 61 s 9.4 h ⁶ β ⁺ γ 331: 361: 945	Pb 202 3.62 h 5.25-10 ⁴ a ¹ y 9617 4227 787 4 y 490; 4 460; 380 100 y	Pb 203 6.2 s 51.9 h	Pb 204 67.2 m 1.4 19899: 912: 375 u 0.68	Pb 205 1.5 · 10 ⁷ a	Pb 206 24.1	Pb 207 22.1	Pb 208 52.4 ^{σ 0.00023} σ _{n. α} <8E-6	Pb 209 3.253 h ^{β⁻ 0.6}	Pb 210 22.3 a β ⁻ 0.02; 0.06 γ 47; e ⁻ ; 9 α 3.72 σ < 0.5	Pb 211 36.1 m ^{β⁻} 1.4 γ405; 832; 427	Pb 212 10.64 h β ⁻ 0.3; 0.6 γ239; 300 9
TI 199 7.42 h ^ε γ 455; 208; 247; 158 9	TI 200 26.1 h ^ε ^{β+} ^{γ 368; 1206; 579; 828}	TI 201 73.1 h	TI 202 12.23 d	TI 203 29.52 σ 11 σ _{n, α} <0.0003	TI 204 78 a β ^{- 0.8; ε} no γ; g σ 22	TI 205 70.48	TI 206 3.7 m 4.20 m ¹ y 686; 453; 216; 256; 8 ⁻ 1.5 1021 y (803)	TI 207 1.33 s 4.77 m ^{hy 1000;} β [*] 1.4 y (898)	TI 208 3.053 m β ⁻ 1.8; 2.4 γ 2615; 583; 511; 860; 277	TI 209 2.16 m β ⁻ 1.8 γ 1567; 465; 117	TI 210 1.30 m β ⁻ 1.9; 2.3 γ800; 298 βn	TI 211 >300 ns β ⁻ ?
Hg 198 9.97 9.017 + 2	Hg 199 42.6 m 16.87	Hg 200 23.10 ¤~1	Hg 201 13.18	Hg 202 29.86	Hg 203 46.59 d	Hg 204 6.87	Hg 205 5.2 m ^{β⁻ 1.5} _{γ204}	Hg 206 8.15 m β ⁻ 1.5 γ 305; 650 9	Hg 207 2.9 m β ⁻ 1.8 γ 351; 997; 1637 m; g	Hg 208 ~42 m	Hg 209 35 s	Hg 210 >300 ns
Au 197 7.73 s 100	Au 198 2.30 d 2.6943 d ly 215; 8 ^{-10;} 97; 14., 180; y 412., 204., y 45500	Au 199 3.139 d β ⁻ 0.3; 0.5 γ 158; 208 ⁹ σ~30	Au 200 18.7 h 48.4 m β ^{-0.6} γ 366; 496. γ 366; 496. 1226; 1226; β ⁺ 333. 1283.	Au 201 26.4 m ^{β⁻ 1.3} ^{γ 543; 517;} ^{613; 167}	Au 202 28 s β ⁻ 3.5 γ 440; 1125; 1307; 1204	Au 203 60 s β ⁻ 2.0 γ218; 44; 51; 318; 369	Au 204 39.8 s ^{β⁻} γ 437; 1511; 692; 723; 1392	Au 205 31 s ^{β⁻} ^{γ379; 467;} ^{946; 813}		128		130
Pt 196 25.242	Pt 197 94.4 m 18.3 h β ⁻ 0.6; 0.7 9 ⁻ 9 ⁻ 0.7 191	Pt 198 7.163	Pt 199 13.6 s 30.8 m 1y 392: 32 317: 188	Pt 200 12.5 h β ⁻ 0.6; 0.7 γ 76; 136; 244; 60; 227	Pt 201 2.5 m	Pt 202 ~43.6 h		126				

²⁰⁴Tl(n,γ)

- First measurement of ²⁰⁴Tl(n,γ) cross section at n_TOF!
- Uncertainty on the *s*-process abundance of ²⁰⁴Pb has been reduced from ~30% down to +8%/-6%
- Calculations are in agreement with the latest solar system abundance of ²⁰⁴Pb reported by K. Lodders in 2021.

Preliminary MACS of ⁹⁴Mo

- Preliminary values of the Maxwellian Averaged Cross Section (MACS) have been evaluated for ⁹⁴Mo,
- The new values of the MACS show a reduction between 10% and 30%.

Experimental measurements

Transmission

Percentage of neutrons that traverses a samples without interacting with it

• Related to total cross section:

$$T = N \frac{C_{in}(t) - KB_{in}(t)}{C_{out}(t) - KB_{out}(t)} = \frac{\varphi_n e^{-n\sigma_{tot}}}{\varphi_n} = e^{-n\sigma_{tot}}$$

Radiative capture (capture yield)

Percentage of neutrons that undergoes capture reaction in the sample

• Related to capture cross section via:

$$Y_{exp} = N \frac{C_{\gamma}(t) - B_{\gamma}(t)}{C_{\varphi}(t) - B_{\varphi}(t)} Y_{\varphi} = (1 - T) \frac{e^{-n\sigma_{\gamma}}}{e^{-n\sigma_{tot}}}$$

Time-of-flight technique

Transmission

Percentage of neutrons that traverses a sample without interacting with it

$$T = N \frac{C_{in}(t) - KB_{in}(t)}{C_{out}(t) - KB_{out}(t)} = \frac{\varphi_n e^{-n\sigma_{tot}}}{\varphi_n} = e^{-n\sigma_{tot}}$$

- Sample-in and sample-out measurement divided in many short cycles
- Estimation of background using black resonance filters (see later)
- N normalization factor (1,0000 ± 0,0025)
- *K* correlated uncertainty component $(1,00 \pm 0,04)$

Transmission spectrum

Transmission measurements

All detected neutrons passed through the sample
 Neutrons scattered in the sample do not reach detector
 Sample perpendicular to parallel neutron beam

 Good transmission geometry (collimation)

 Homogeneous sample:

 no spatial distribution

- no holes

Detection system

- Li glass scintillators
- Enriched to 95% in ⁶Li
- Placed inside metallic "castle" to reduce background
- Amplitude and time signals
- Time resolution 4,21 ns

Background

$$B(t) = b_0 + b_1 e^{-\lambda_1 t} + b_2 e^{-\lambda_2 t} + b_3 e^{-\lambda_3 (t+\tau_0)}$$

- b_0 time independent background
- $b_1 e^{-\lambda_1 t}$ neutron capture in hydrogen of moderator
- $b_2 e^{-\lambda_2 t}$ neutrons scattered inside the detector station
- $b_3 e^{-\lambda_3(t+ au_0)}$ neutron from previous cycle $(au_0=1/f)$

Neutron flux monitor

- Neutron flux continuously monitored;
- SiMON (Silicon MONitor) in beam;
- Silicon detectors facing mylar foil coated in lithium;
- Minimal reduction of neutron flux.

Capture detectors

C6D6 detectors

- Low sensitivity to scattered neutrons;
- Fast recovery from gamma flash;
- Small gamma detection efficiency.

Background

$B(t) = a_0 + a_1 C_{OB} + a_2 R_n (C_{Pb} - C_{OB})$

Measurements with open beam, Pb samples and beam off

- a_0 time independent background
- $a_1 C_{OB}$ sample independent, open beam measurement
- $a_2 R_n (C_{Pb} C_{OB})$ neutrons scattered by the sample, obtained from Pb measurement

Normalization

• For a capture resonance with $\Gamma_{\gamma} \gg \Gamma_n$ the capture cross section is approximately equal to the total cross section $\frac{e^{-n\sigma_{\gamma}}}{e^{-n\sigma_{tot}}} \approx 1$

- A saturated resonance $(n\sigma_{tot} \gg 1)$ absorbs all the impinging neutrons $T \approx 0$
- When both conditions are met the capture yield is equal to 1

Extract normalization factor from ¹⁹⁷Au saturated resonance

Capture yield

Pulse Height Weighting Technique (PHWT)

Kernel ratio with literature ⁹⁴Mo

- The preliminary kernels obtained with SAMMY were compared to the ones in literature (Weigmann and Musgrove capture measurements);
- Main measurements used in libraries.