

ALMA MATER STUDIORUM Università di Bologna

Neutron spectroscopy of ²⁶Mg states: constraining the ²²Ne(α,n)²⁵Mg reaction rate

Nicholas Pieretti on behalf of the n_TOF Collaboration

Department of Physics and Astronomy

Motivations

Neutron poison:

- ^{25,26}Mg are key neutron poisons during the s-process.
- They compete with ⁵⁶Fe (basic s-process seed) via $^{25,26}Mg(n,\gamma)$.

Constraints for ²²Ne(α ,n)²⁵Mg and ²²Ne(α , γ)²⁶Mg:

- ²²Ne(α,n)²⁵Mg: primary neutron source in Red Giant stars
- Its reaction rate is very uncertain because of poor knowledge of ²⁶Mg states.
- From neutron measurements the **energy** and J^{π} of ²⁶Mg states can be deduced, together with Γ_{γ} and Γ_{n} .

UNIVERSITÀ DI B

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

NTER STUD

ALMA MATER STUDIORUM Università di Bologna

Measurement of ${}^{25}Mg(n,\gamma) \leftrightarrow {}^{22}Ne(\alpha,n){}^{25}Mg$

J^π = 0⁺, 1⁻, 2⁺, 3⁻, 4⁺ ...

ITOF

 α + ²²Ne

α	$J^{\pi}=O^{+}$
²² Ne	$J^{\pi}=O^{+}$

Only **natural-parity states in** ²⁶Mg can participate in the ²²Ne(α,n)²⁵Mg reaction:

J^π = 0⁺, 1⁻, 2⁺, 3⁻, 4⁺ ...

n + ²⁵Mg

n	$J^{\pi} = 1/2^+$
²⁵ Mg	$J^{\pi} = 5/2^{+}$

All **states in** ²⁶Mg can participate in the ²⁵Mg(n,γ)²⁶Mg reaction:

For nuclear astrophysics, what is important is the **Maxwellian Averaged Cross-Sections (MACS)** at various **temperatures** (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹):
$$r = N_A N_n v \sigma(v)$$
 $r = N_A N_n \langle \sigma \cdot v \rangle$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi}(kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

For nuclear astrophysics, what is important is the **Maxwellian Averaged Cross-Sections (MACS)** at various **temperatures** (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹):
$$r = N_A N_n v \sigma(v)$$
 $r = N_A N_n \langle \sigma \cdot v \rangle$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi}(kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

NTOF

Neutron spectroscopy of ^{26}Mg states: constraining the $^{22}Ne(\alpha,n)^{25}Mg$ reaction rate

ALMA MATER STUDIORUN

UNIVERSITÀ DI BOLOGNA

For nuclear astrophysics, what is important is the **Maxwellian Averaged Cross-Sections (MACS)** at various **temperatures** (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹):
$$r = N_A N_n v \sigma(v)$$
 $r = N_A N_n \langle \sigma \cdot v \rangle$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi}(kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

Two methods to determine MACS:

- 1. measurement of **energy dependent** neutron capture cross-sections → EAR1 & EAR2
- 2. integral measurement (energy integrated) using neutron beams with suitable energy → NEAR

Neutron spectroscopy of ²⁶Mg states: constraining the ²²Ne(α ,n)²⁵Mg reaction rate

UNIVERSITÀ DI BOLO

The CERN accelerator complex Complexe des accélérateurs du CERN

 \downarrow H⁻ (hydrogen anions) \downarrow p (protons) \downarrow ions \downarrow RIBs (Radioactive Ion Beams) \downarrow n (neutrons) \downarrow p (antiprotons) \downarrow e (electrons) \downarrow μ (muons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform NTOF

ALMA MATER STUDIORUM Università di Bologna

The CERN accelerator complex Complexe des accélérateurs du CERN

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

ALMA MATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

Why n_TOF?

From E. Mendoza, APRENDE WP2-WP4 Workshop

Why n_TOF?

From E. Mendoza, APRENDE WP2-WP4 Workshop

ALMA MATER STUDIORUM Università di Bologna

Why n_TOF?

Previous measurements of $^{25}Mg(n,\gamma)$ at n_TOF

Capture setup:

- 2 C₆D₆ liquid scintillators
- Total Energy Detection
 System based on PHWT

Mg Sample:

- 3.94 g, 2 cm diameter
- Enrichment 97.86 %
- 3.00×10⁻² at/b

Previous measurements of $^{25}Mg(n,\gamma)$ at n_TOF

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Measurement of ${}^{25}Mg(n,\gamma) \leftrightarrow {}^{22}Ne(\alpha,n){}^{25}Mg$

a ²²Ne gas jet target From Jaeger et al., Phys. Rev. Lett. 87, 202501 (2001) **Region of interest** 10^{2} 10-2 10 10-3 $E_{\alpha} = 832 \text{ keV}$ E_{CM} = 706 keV 10 Yield [arb. units] 10^{-1} 10-5 Data in the 0.80 0.83 0.86 literature 10^{-2} Harms et al. $^{22}Ne(\alpha,n)^{25}Mg$ 10^{-3} - 10^{-4} Giesen *et al*. This work 10^{-5} Drotleff et al. Δ Others 10^{-6} 0.6 0.7 0.8 1.3 1.4 0.9 1.02 Energy E_{α} [MeV]

Direct measurement of

²²Ne(α ,n)²⁵Mg in Gamow Window

100-150 µA He⁺ beam incident on

Stellar cross sections (MACS) for the s-process

Resonance strength ²²Ne(α , γ)²⁶Mg:

$$ω_{\gamma}$$
 = g $Γ_{\alpha} Γ_{\gamma} / (Γ_{\alpha} + Γ_{\gamma} + Γ_{n})$

ω_{α}	Γ_n	
$\overline{\omega_{\gamma}} =$	$\overline{\Gamma_{\gamma}}$	

Publication	YEAR	Result	comment
Shahina, PRC	2024	$\Gamma_{\rm n} / \Gamma_{\gamma}$ = 2.85(71)	ω_{α} res. strength
M. Wiescher, EPJA	2023	$Γ_n = 0.4 - 1.0 \text{ eV}$ $Γ_\gamma = 1.33 \text{ eV}$	Re-evaluation
Y. Chen, PRC	2021	$Γ_n = 0.4 \text{ eV}$ $Γ_\gamma = 1.33 \text{ eV}$	²⁵ Mg(d,p) ²⁶ Mg transfer
S. Ota, PLB	2020	$\Gamma_{\rm n} / \Gamma_{\gamma} =$ 1.14(26)	transfer

UNIVERSITÀ DI BOLOGNA

Neutron spectroscopy of ^{26}Mg states: constraining the $^{22}Ne(\alpha,n)^{25}Mg$ reaction rate

²⁵Mg(n,tot) and ²⁵Mg(n,γ) R-Matrix analysis

C Massimi *et al.*, <u>Phys. Rev. C **85**</u>, 044615 (2012) C Massimi *et al.*, <u>Phys. Lett. B **768**, 1 (2017)</u>

²⁵Mg(n,tot) and ²⁵Mg(n,γ) R-Matrix analysis

C Massimi *et al.*, <u>Phys. Rev. C **85**</u>, 044615 (2012) C Massimi *et al.*, <u>Phys. Lett. B **768**, 1 (2017)</u>

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

²⁵Mg(n, γ) for neutron source reaction in stars

²⁵Mg(n,γ) for neutron source reaction in stars

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Neutron spectroscopy of ²⁶Mg states: constraining the ²²Ne(α ,n)²⁵Mg reaction rate

Neutron spectroscopy of ²⁶Mg states: constraining the ²²Ne(α ,n)²⁵Mg reaction rate

36

Conclusions...?

- ²²Ne(α ,n) and (α , γ) represent a long-standing "problem" in nuclear astrophysics
- Measurements of ²⁵Mg(n,tot) and ²⁵Mg(n,γ) were performed at the GELINA facility and the n_TOF facility, respectively, to study excited states in ²⁶Mg
- Simultaneous resonance shape (R-Matrix) analysis of capture and transmission resulted in:
 - accurate ²⁵Mg(n,γ) cross section;
 - energy and J^{π} determination of ²⁶Mg levels: evidence for natural states;
 - constraints for the competing $^{22}Ne(\alpha,\gamma)$ reaction;
 - doubts on the $E_{\alpha} = 832 \text{ keV}$ resonance.

Proposal: ²⁵Mg(n,γ)²⁶Mg @ n_TOF

Our proposal is to **repeat the measurement in EAR1** with a factor 4 higher statistics and with some improvements:

- \circ Combined use of LaBr₃ and C₆D₆ detectors
- Use of a thicker enriched ²⁵Mg sample
- Combine with a capture measurement in EAR2

Neutron energy (keV)

Proposal: ²⁵Mg(n,γ)²⁶Mg @ n_TOF

- More protons (4×10^{18})
- Thicker Mg sample

ALMA MATER STUDIORUM Università di Bologna

Neutron spectroscopy of ²⁶Mg states: constraining the ²²Ne(α ,n)²⁵Mg reaction rate

Acknowledgments

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511 (EURO-LABS).

Thank you for your attention!

Credits:

www.unibo.it

Motivations

• NEUTRON POISON:

- ^{25,26}Mg are the most important neutron poisons due to neutron capture on Mg stable isotopes,
 i.e. ^{25,26}Mg(n,γ), in competition with neutron capture on ⁵⁶Fe (the basic s-process seed for the production of heavier isotopes).
- CONSTRAINTS for ²²Ne(α ,n)²⁵Mg and ²²Ne(α , γ)²⁶Mg:
 - ²²Ne(α ,n)²⁵Mg is one of the most important neutron source in Red Giant stars. Its reaction rate is very uncertain because of the poorly known property of the states in ²⁶Mg. From neutron measurements the energy, J^π and energy of ²⁶Mg states can be deduced, in addition to Γ_{γ} and Γ_{n} .

ALMA MATER STUDIORUM Università di Bologna

Extra slides

Constraints for the ²²Ne(α,n)²⁵Mg reaction

Element	Spin/ parity
²² Ne	0+
⁴ He	0+

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell}$$
$$\vec{J} = 0 + \vec{\ell}$$

Only **natural-parity** (0⁺, 1⁻, 2⁺, 3⁻, 4⁺, ...) **states in** ²⁶Mg can participate in the $^{22}Ne(\alpha,n)^{25}Mg$ reaction

Extra slides

Constraints for the ²²Ne(α,n)²⁵Mg reaction

Element	Spin/ parity
²⁵ Mg	5/2+
n	1/2+

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell}$$
$$\vec{J} = 2 + \vec{\ell} \quad \vec{J} = 3 + \vec{\ell}$$

s-wave $\rightarrow J^{\pi} = \underline{2^{+}}, 3^{+}$ p-wave $\rightarrow J^{\pi} = \underline{1^{-}}, 2^{-}, \underline{3^{-}}, 4^{-}$ d-wave $\rightarrow J^{\pi} = \underline{0^{+}}, 1^{+}, \underline{2^{+}}, 3^{+}, \underline{4^{+}}, 5^{+}$ States in ²⁶Mg populated by ²⁵Mg(n, γ) reaction

The n_TOF facility

The advantages of n_TOF are a direct consequence of the characteristics of the **PS proton beam**: **high energy, high peak current, low duty cycle.**

proton beam momentum	20 GeV/c
intensity (dedicated mode)	~ 10 ¹³ protons/pulse
repetition frequency	1 pulse/1.2s
pulse width	6 ns (rms)
n/p	300
lead target dimensions	80x80x60 cm ³
cooling & moderation material	$N_2 \& (H_2 O + {}^{10} B)$
moderator thickness in the exit face	5 cm
neutron beam dimension in EAR-1 (capture mode)	2 cm (FWHM)

ALMA MATER STUDIORUM Università di Bologna

Extra slides

Extra slides

Extra slides

ALMA MATER STUDIORUM Università di Bologna

Stellar cross sections (MACS) for the s-process

Isotopes of special interest:

^{186,187,188}Os (cosmochronometer),¹⁹⁷Au (reference cross section), ^{24,25,26}Mg, ³³S(n,a), ¹⁴N(n,p), ³⁵Cl(n,p), ²⁶Al(n,p),
 ²⁶Al(n,a) (neutron poison), ¹⁵⁴Gd (s-only isotopes), ⁴⁰K(n,p), ⁴⁰K(n,a), ^{63,65}Cu^{, 93,94}Nb, ⁶⁸Zn, ^{69,71}Ga, ^{70,72,73,74,76}Ge,
 ^{77,78,80}Se (weak component), ^{155,157,160}Gd, ⁷Li(n,p), ⁷Li(n,a) BBN

Neutron Sources ²²Ne(a,n)²⁵Mg and ¹³C(a,n)¹⁶O:

n+²⁵Mg, n+¹⁶O

