GIANTS XII

New results on low energy $^{22}Ne(\alpha,n)^{25}Mg$ with SHADES at the LNGS Bellotti facility

Daniela Mercogliano on behalf of the LUNA Collaboration Department of Physics «E. Pancini» Unina & INFN-Na daniela.mercogliano@unina.it

- ²²Ne(α , n)²⁵Mg pivotal for:
- S-process nucleosynthesis

• Isotopic ratios of ^{24,25,26}Mg

• Nucleosynthesis of ⁶⁰Fe

- ²²Ne(α , n)²⁵Mg pivotal for:
- S-process nucleosynthesis

• Isotopic ratios of ^{24,25,26}Mg

• Nucleosynthesis of ⁶⁰Fe

```
Weak component in massive stars:
```

T=0.36-0.37 GK,

density $N_n = 10^{11-13}$ n/cm-3

 $60 \le A \le 90$

- ²²Ne(α , n)²⁵Mg pivotal for:
- S-process nucleosynthesis

Nucleosynthesis of ⁶⁰Fe

Main component in AGB stars: T=0.25-0.3 GK density $N_n = 10^{10} \text{ n/cm}^{-3}$ $90 \le A \le 208$

Weak component in massive stars:

T=0.36-0.37 GK, density $N_n = 10^{11-13}$ n/cm-3 $60 \le A \le 90$

- ²²Ne(α , n)²⁵Mg pivotal for:
- S-process nucleosynthesis

• Nucleosynthesis of ⁶⁰Fe

Stellar reaction rates for $^{22}Ne(\alpha,n)^{25}Mg$ and $^{22}Ne(\alpha,\gamma)^{26}Mg$ required

Weak component in massive stars: T=0.36-0.37 GK, density $N_n = 10^{11-13}$ n/cm-3 $60 \le A \le 90$ Main component in AGB stars: T=0.25-0.3 GK Ni Co Fe density $N_n = 10^{10} \text{ n/cm}^{-3}$ $90 \le A \le 208$ ⁵⁶Fe s-Branchings Seed for s-Process (⁶³Ni, ⁷⁹Se, ⁸⁵Kr, ...) Reaction s-Process Path

$$N_A < \sigma v > = \left(\frac{8}{\pi \mu}\right)^{\frac{1}{2}} \frac{N_A}{(k_B T)^{3/2}} \int_0^\infty \sigma(E) E e^{-E_r/k_B T} d$$

Need to be known in the Gamow window $(E_{\alpha} = 600 - 900 \text{ keV})$

dE

$$N_A < \sigma v > = \left(\frac{8}{\pi \mu}\right)^{\frac{1}{2}} \frac{N_A}{(k_B T)^{3/2}} \int_0^\infty \boldsymbol{\sigma}(\boldsymbol{E}) E e^{-E_r/k_B T} dr$$

Need to be known in the Gamow window $(E_{\alpha} = 600 - 900 \text{ keV})$

- Extremely low values (~ pb)
- High level density in ²⁶Mg

dE

$$N_A < \sigma v > = \left(\frac{8}{\pi \mu}\right)^{\frac{1}{2}} \frac{N_A}{(k_B T)^{3/2}} \int_0^\infty \sigma(\boldsymbol{E}) E e^{-E_r/k_B T} dE$$

Need to be known in the Gamow window $(E_{\alpha} = 600 - 900 \text{ keV})$

- Extremely low values (~ pb)
- High level density in ²⁶Mg

neutrons (>100 counts/h)

$$N_A < \sigma v > = \left(\frac{8}{\pi \mu}\right)^{\frac{1}{2}} \frac{N_A}{(k_B T)^{3/2}} \int_0^\infty \sigma(\boldsymbol{E}) E e^{-E_r/k_B T} dr$$

Need to be known in the Gamow window $(E_{\alpha} = 600 - 900 \text{ keV})$

- Extremely low values (~ pb)
- High level density in ²⁶Mg

neutrons (>100 counts/h)

dE

SHADES Scientific Goal

First deep-underground direct measurement of the ${}^{22}Ne(\alpha,n){}^{25}Mg$ cross-section in the range of astrophysical interest (E_{α} = 597-900 keV)

Hybrid array for neutron detection Deep underground location at Bellotti IBF, LNGS

Beam-induced background reduction techniques

- >99% enriched ²²Ne windowless gas target
- He⁺ beam, I up to 500 μ A

Gas target line of the Bellotti IBF

- >99% enriched ²²Ne windowless gas target
- He⁺ beam, I up to 500 μ A

Gas target line of the Bellotti IBF

- >99% enriched ²²Ne windowless gas target
- He⁺ beam, I up to 500 μA

- >99% enriched ²²Ne windowless gas target
- He⁺ beam, I up to 500 μA

Hybrid array

• 18 steel ³He counters

- >99% enriched ²²Ne windowless gas target
- He⁺ beam, I up to 500 μA

- 18 steel ³He counters
- 12 EJ309 liquid scintillators

- >99% enriched ²²Ne windowless gas target
- He⁺ beam, I up to 500 μ A

- 18 steel ³He counters
- 12 EJ309 liquid scintillators
- 1 Si detector

- >99% enriched ²²Ne windowless gas target
- He⁺ beam, I up to 500 μ A

- 18 steel ³He counters
- 12 EJ309 liquid scintillators
- 1 Si detector

Surface measurements bkg > 100 counts/h

Surface measurements bkg > 100 counts/h

➤ Massive natural shielding

> Additional borated polyethylene shielding

Low-activity detectors

Surface measurements bkg > 100 counts/h

➤ Massive natural shielding

> Additional borated polyethylene shielding

Low-activity detectors

Natural bkg = 0.00011 counts/s/counter (~7 total counts/h)

Surface measurements bkg > 100 counts/h

► Massive natural shielding

Additional borated polyethylene shielding

Low-activity detectors

Natural bkg = 0.00011 counts/s/counter (~7 total counts/h)

Background)

SHADES Status and Outlook

Setup characterization and optimization of BIB

EJ309 liquid scintillators are blind to neutrons from $^{22}Ne(\alpha, n)^{25}Mg$ reactions

Neutrons coming from reactions on impurities have an $E_n > E_{threshold}$.

7

EJ309 liquid scintillators are **blind** to neutrons from ²²Ne(α , n)²⁵Mg reactions

Neutrons coming from reactions on impurities have an $E_n >$ E_{threshold}.

Identification of **BIB** achieved by looking at the **EJ**309 spectra:

• Energy information to identify **BIB** sources

- Information on the position of the BIB (upstream/downstream) asymmetry)
- Anticoincidence ³He-EJ309 (to be implemented)

EJ309 liquid scintillators are **blind** to neutrons from ²²Ne(α , n)²⁵Mg reactions

Neutrons coming from reactions on impurities have an $E_n >$ E_{threshold}.

Identification of **BIB** achieved by looking at the **EJ**309 spectra:

- Energy information to identify **BIB** sources
- Information on the position of the BIB (upstream/downstream) asymmetry)
- Anticoincidence ³He-EJ309 (to be implemented)

SHADES Status and Outlook

optimization of BIB

Setup characterization and

Efficiency measurements ⁵¹V(p,n) at ATOMKI (April 2025)

Efficiency measurements using the standard $^{51}V(p,n)^{51}Cr$ reaction

10⁶ Counts/C -target measurement Blank target measurement (BIB) Natural Background (normalized to 500nA) Integration region 10⁵ **10**⁴ 10³ 10² 200 400 600 800 1000 1200 0 Neutron energy (keV) Van der Graaf Laboratory of Institute for Nuclear Reasearch ATOMKI, in Debrecen, Hungary ^T 3rd -11th April 2025

Efficiency calibration

$$x) = \frac{N_n}{N_R}$$

 $\eta(E,$

$N_n \rightarrow$ Irradiation measurement $N_R \rightarrow$ Activation measurement

Efficiency measurements using the standard $^{51}V(p,n)^{51}Cr$ reaction

Counts/C -target measurement Blank target measurement (BIB) Natural Background (normalized to 500nA) Integration region 10⁵ **10**⁴ 10³ 10² 200 600 400 800 1000 1200 0 Neutron energy (keV) Van der Graaf Laboratory of Institute for Nuclear Reasearch ATOMKI, in Debrecen, Hungary ^T 3rd -11th April 2025

Efficiency calibration

$$x) = \frac{N_n}{N_R}$$

 $\eta(E,$

$N_n \rightarrow$ Irradiation measurement $N_R \rightarrow$ Activation measurement

E _p [keV]	E _n range [keV]	$\eta_{mes}~\%$	$\eta_{ m sim}\%$
1700	112-148	9.62 ± 0.13	11.4
1850	247-302	8.53 ± 0.11	10.2
2000	383-454	7.56 ± 0.09	9.62
2300	658-757	6.59 ± 0.06	8.25

SHADES Status and Outlook

optimization of BIB

Efficiency measurements ⁵¹V(p,n) at ATOMKI (April 2025)

Setup characterization and

835 keV resonance measurement (November 2024 and March 2025)

SHADES Preliminary Results

 \Box Re-measure the resonance strenght $\omega\gamma$

□ Identify its exact position in ²⁶Mg

E_x = 11329 keV (Er= 835 keV)

$$Y(E_0) = (\lambda_r^2 \,\omega \gamma) \frac{1}{2\pi\epsilon_r} \left[\arctan\left(\frac{E_0 - E_r}{\frac{\Gamma}{2}}\right) - \arctan\left(\frac{E_0 - E_r - \Delta E_r}{\frac{\Gamma}{2}}\right) \right]$$

SHADES Status and Outlook

optimization of BIB

Setup characterization and

Efficiency measurements ⁵¹V(p,n) at ATOMKI (April 2025)

> 835 keV resonance measurement (November 2024 and March 2025)

> > Probing the 656 keV resonance (November-December 2025)

Conclusions and Takeaways

- ²²Ne(α ,n) pivotal in nuclear astrophysics, but its stellar reaction rate is highly uncertain
- \bullet counts/h below the 835 keV resonance.
- \bullet Additional BIB minimization leads to an unprecented sensitivity of 15 counts/h.
- 835 keV resonance scans performed : preliminary values of the $\omega\gamma$ in agreement with the literature. \bullet
- \bullet resonance at 656 keV.

Low energy investigations strongly hampered by natural background. State of the art dominated by UL of 100

SHADES takes the advantages of deep underground location (INFN-LNGS) to reduce natural background.

The enhancement in sensitivity opens the possibility to probe the lower-energy region to search for a possible

Thank you for the attention!

