s-process & i-process

S. Cristallo

In collaboration with D. Vescovi, L. Piersanti & M.Bezmalinovich

INAF - Osservatorio Astronomico d'Abruzzo

The solar distribution

Fusion reactions between charged particles

Neutron capture processes

Proton number

个

														90	91	92	
Y														89			
Sr												86	87	88			
Rb												85		87			
Kr									80	82	83	84		86			
Br									79	81							
Se							76	77	78	80		82					
As							75										
Ge			70		72	73	74		76								
Ga			69		71												
Zn	66	67	68		70												
Cu	65			J											^ _		
					I		I					I		=5	U		

Neutron number

Proton number

s process

Neutron number

s process

, ~ 10⁷ n/cm³

Neutron number

process

N=50

 $N_n > 10^{21} n/cm^3$

Proton number

Neutron number

Proton number

Neutron number

Proton number

Origin of the heavy elements

A large neutron flux is difficult to be maintained!!!!

closed neutron shell

time

mass

F.R.U.I.T.Y. FUll-Network Repository of Updated Isotopic Tables & Yields

SC+ 2011,2015

fruity.oa-abruzzo.inaf.it

-2.85 < [Fe/H] < +0.3

A platform dedicated to stars!

martini.oa-abruzzo.inaf.it (soon online)

s-process-AGBs Click on the button to download AGB yields.

Atomic-Opacities

Click on the button to download Element Atomic Opacities.

Go to data

r-process-NSMs Click on the button to download NSM yields.

Go to data

KNe-lightcurves

Click on the button to visualize Kilonovae Lightcurves.

Dust-AGB Click on the button to download AGB Dust yields.

Go to data

A wider project also including atomic physics (see M. Bezmalinovich talk)

CONSTRAINTS (I) OBSERVATIONS (spectroscopy)

Second to first s-process peak

Third to second s-process peak

SC+ 2011

[ls/Fe]= [Sr,Y,Zr/Fe] [hs/Fe]= [Ba,La,Ce,Nd/Fe] [hs/ls]=[hs/Fe]-[ls/Fe]

CONSTRAINTS (I) **OBSERVATIONS** (spectroscopy)

-0.5

[Fe/H]

0

M = 1.5M

0.5

0

-1

-0.5

[hs/ls]

Third to second s-process peak

[ls/Fe] = [Sr, Y, Zr/Fe][hs/Fe] = [Ba, La, Ce, Nd/Fe][hs/ls]=[hs/Fe]-[ls/Fe]

AGB stars and presolar SiC grains

CONSTRAINTS (II) LABORATORY (presolar grains)

CONSTRAINTS (II) LABORATORY (presolar grains)

CONSTRAINTS (II) LABORATORY (presolar grains)

The effectiveness of presolar grain measurements

- Correlated Sr and Ba isotope analyses of more MS grains using the new generation of instruments are needed to better quantify the MS grain distribution to determine the data variability, which will help to assess the primary mechanism responsible for the ¹³C formation
- Nuclear Experiments: AGB model predictions for δ^{88} Sr and δ^{138} Ba rely directly on the MACS values of ⁸⁶Sr, ⁸⁸Sr, ¹³⁶Ba, and ¹³⁸Ba
- Current AGB model uncertainties in δ^{88} Sr and δ^{138} Ba are controlled by uncertainties in the ⁸⁶Sr (±10%) and ¹³⁶Ba (±3%) MACS values, respectively, which correspond to ~200‰ and ~50‰ uncertainties, respectively
- → As the full range of δ⁸⁸Sr values observed among MS grains is only ~400‰, new measurements of ⁸⁶Sr MACS values are needed to reduce model uncertainties

Second effective constraint for the s-process: s-only Solar distribution

Prantzos+ 2020

Second effective constraint for the s-process: s-only Solar distribution

Prantzos+ 2020

- The chain of branching points at the Cs isotopes is of particular interest not only for understating the ¹³⁵Cs/¹³³Cs ratio in the Early Solar System
- It affects the isotopic composition of Ba and in particular the relative abundances of the two s-only nuclei ¹³⁴Ba and ¹³⁶Ba → important for explaining their <u>measured ratio</u> in meteorites (e.g., Busso+ 21, Palmerini+21, Taioli+ 22)

- The half lives of both 134 Cs and 135 Cs decrease by orders of magnitude in stellar conditions \rightarrow act as branching point
- The branching point at 134 Cs (T_{1/2} = 2 Myr) allows the production of the long-living isotope 135 Cs

2500

2000

 $^{134}Cs(n,\gamma)^{135}Cs$

KADoNiS v0.3

Bao et al. (2000)

→ The neutron-capture cross section of ¹³⁵Cs has been experimentally determined, while the $^{134}Cs(n,\gamma)$ cross section has only been semiempirically estimated (Patronis+ 04)

 \rightarrow Re-evaluated cross sections, \rightarrow systematically higher due to the new (higher by ~5%) adopted gold cross section as a reference

Neutron sources

 ²²Ne(α,n)²⁵Mg reaction rate uncertain by a factor ~3: direct and indirect measurements (e.g., Adsley+21, Shahina+ 24)

β decays

 Theoretical ¹³⁴Cs β⁻ rate is <u>reduced</u> up to a factor of 8 for T > 10⁸ K w.r.t Takahashi & Yokoi 87 (Li+ 21, Taioli+ 22)

- ²²Ne(α,n)²⁵Mg reaction rate from Adsley+ 21 with indirect data and with direct data only
- 134 Ba(n, γ) and 136 Ba(n, γ) from ASTRAL v0.2
- ¹³⁴Cs β⁻ rate from Takahashi & Yokoi 87 and Taioli+ 22
- ¹³⁴Ba/¹³⁶Ba ratio <u>decreases</u> with enhanced ²²Ne(α,n)²⁵Mg rate computed from directed data only
- → ¹³⁴Ba/¹³⁶Ba ratio <u>decreases</u> with new ¹³⁴Cs β⁻ rate
- → ¹³⁴Ba/¹³⁶Ba ratio <u>almost unchanged</u> with revised n-capture rates
- Better agreement: Adsley direct + Taioli model

The i-process

- 1. H-ingestion in low-Z low-mass AGB stars
- 2. H-ingestion in rapidly accreting WDs
- 3. Massive AGBs stars at low Z
- 4. He-accreting WDs

Proton Ingestion Episode (PIE) and the intermediate neutron capture process (i-process)

- Low time steps \rightarrow Time dependent mixing
- Rapid structure reaction \rightarrow Coupling between phisical and chemical evolution
- Large neutron densities $(n_n > 10^{15} \text{ cm}^{-3}) \rightarrow 700$ isotopes & 1000 reactions

Heavy (and light) elements in PIE episodes

Cristallo+2009

PIEs: transient phase or destructive episode?

How can we distinguish processes?

Can we use isotopic ratios?

Ref	⁸⁵ Rb	¹³⁵ Ba+ ¹³⁷ Ba	¹⁴² Nd+ ¹⁴⁴ Nd	¹⁵² Sm+ ¹⁵⁴ Sm	¹⁵¹ Eu	
	totRb	^{tot} Ba	^{tot} Nd	totSm	^{tot} Eu	
s-proc (Teramo)	0.50	0.08	0.62	0.27	0.46	
i-proc (Bruxelles, AGBs)	0.13	0.70	0.59	0.74	0.73	
i-proc (Teramo, AGBs)	0.30	0.94	0.46	0.54	0.49	
i-proc (Victoria; RAWDs)	0.22	0.44	0.51	0.59	0.65	
r-process (residual)	0.97	0.70	0.26	0.64	0.48	
r-process (polar)	0.16	0.98	0.19	0.09	0.77	
r-process (equatorial)	0.45	0.50	0.21	0.53	0.60	

Can we use isotopic ratios?

Ref	⁸⁵ Rb	¹³⁵ Ba+ ¹³⁷ Ba	¹⁴² Nd+ ¹⁴⁴ Nd	¹⁵² Sm+ ¹⁵⁴ Sm	¹⁵¹ Eu				
	^{tot} Rb	^{tot} Ba	^{tot} Nd	totSm	totEu				
s-proc (Teramo)	0.50	0.08	0.62	0.27	0.46				
i-proc (Bruxelles, AGBs)	0.13	0.70	0.59	0.74	0.73				
i-proc (Teramo, AGBs)	0.30	0.94	0.46	0.54	0.49				
i-proc (Victoria; RAWDs)	0.22	0.44	0.51	0.59	0.65				
r-process (residual)	0.97	0.70	0.26	0.64	0.48				
r-process (polar)	0.16	0.98	0.19	0.09	0.77				
r-process (equatorial)	0.45	0.50	0.21	0.53	0.60				
N.B.: ¹³⁵	N.B.: ¹³⁵ Ba/ ¹³⁷ Ba ratio largely changes among models!								

Low metallicity low mass AGBs: an independent confirmation

Choplin+2021

Eu 149 93.1 d	Eu 150 12.8 h 36.9 a β ^{-1.0}	Eu 151 47.81	Eu 152 96 m 9.3 h 13.33 a 8 ^{-1.9} c ³⁺	Eu 153 52.19	Eu 154 46.0 m 8.8 a 6 0.6; 18.	Eu 155 4.761 a
ε γ 328; 277	β ⁺ γ 334; 407 584	or 4 + 3150 + 6000	hy 90 963 344 #68000 #11000	σ 300 σ _{n, α} 1E-6	1274; 723; 19 68; 1005 101 σ 1500	β ⁻ 0.17; 0.25 γ 87; 105 σ 3900
Sm 148 11.24	Sm 149 13.82	Sm 150 7.38	Sm 151 93 a	Sm 152 26.75	Sm 153 46.27 h	Sm 154 22.75
α 1.96 σ 2.4	σ 40100 σ _{n, α} 0.031	σ 102	β 0.1 γ (22); e σ 15200	or 206	β 0.7; 0.8 γ 103; 70 σ 420	σ7.5
Pm 147 2.62 a	Pm 148 41.3 d 5.37 d 6 0.4: 6 2.5	Pm 149 53.1 h	Pm 150 2.7 h	Pm 151 28.4 h	Pm 152	Pm 153 5.3 m
β ⁻ 0.2 γ (121) σ 84 + 96	1.0 γ 550; γ 550; 1465; hγ(76);e 915 σ 10600 σ ~ 1000	β 1.1 γ 286 σ 1400	β 2.3; 3.4 γ 334; 1325; 1166	β 0.8; 1.2 γ 340; 168 σ~150	$\begin{array}{cccc} \gamma 122; & \beta^{-} 1.9; & \gamma 122; \\ 231; & 3.3 & 841; \\ 245; & \gamma 245; & 961; \\ 340 & 122 & 963 \end{array}$	β 1.7 γ36; 127; 28; 120
Nd 146 17.2	Nd 147 10.98 d	Nd 148 5.7	Nd 149 1.73 h	Nd 150 5.6	Nd 151 12.4 m	Nd 152 11.4 m
or 1.5	β ⁻ 0.8; 0.9 γ91; 531 e ⁻ α 440	σ2.4	β 1.4; 1.6 γ211; 114; 270	1.7 · 10 ¹⁹ a 2β ⁻ σ 1.0	β ⁻ 1.2; 2.3 γ 117; 256; 1181	β ⁻ 0.9; 1.2 γ279; 250

Low metallicity low mass AGBs: an independent confirmation

i-process **S-Drocess** Eu 149 Eu 150 Eu 151 Eu 152 Eu 153 Eu 154 Eu 155 93.1 d 47.81 52.19 46.0 m 8.8 a 4.761 a 96 m 9.3 h 13.33 a 12.8 h 36.9 a 0.17; 0.25. 6000 3900 σn, α 1E-6 328: 277 Sm 149 Sm 150 7.38 m 153 Sm 154 Sm 148 m 151 Sm 152 13.82 22.75 11.24 .75 7 · 1015 a 103; 70... 420 σ 40100 σ_{n, α} 0.031 (22...); e 1.96 102 206 15200 Pm 150 Pm 152 Pm 153 Pm 149 Pm 151 m 147 Pm 148 5.3 m 2.7 h 41.3 d | 5.37 d 53.1 h 23.4 h 15 m | 7.5 m | 4.2 m β⁻⁻ 2.3; 3.4.. γ 334; 1325; 1166... β⁻⁻ 0.8; 1.2. γ 340; 168. σ~150 β⁻ 1.7... γ 36; 127; 28; 120... 3⁻0.2... (121...) 84 + 96 β⁻ 1.1 γ 286... σ 1400 915. a ~ 100 Nd 152 d 147 Nd 148 Nd 149 Nd 150 ld 151 Nd 146 172 5.7 1.73 h 5.6 12.4 m 11.4 m 17.1019 a β⁻⁻ 1.4; 1.6. γ 211; 114; 270… β- 0.9; 1.2. 1; 531 β= 1.2, 2.3. γ 117; 256; 1181 279; 250. 2β⁻ σ 1.0 or 2.4 440

Choplin+2021

The effect of n-capture cross sections

The effect of n-capture cross sections

The effect of n-capture cross sections

Take home message

- Presolar grains are powerful tools to calibrate stellar models;
- Accurate nuclear data are needed to further constrain stellar models;
- The i-process hosting site is still unknown and difficult to be modelled;
- A new series of challenging measurements are needed to constrain the i-process.

