

Nemzeti Kutatási, Fejlesztési És Innovációs Hivatal

Explosive nucleosynthesis

Marco Pignatari

- @Konkoly Observatory, CSFK HUN-REN & MTA Centre of Excellence, Budapest, Hungary
- @BGI, Bayreuth University, Bayreuth, Germany

KONKOL

GIANTS2025, Catania, 3-4 July 2025

Stellar evolution: from low-mass star to massive stars

Binary stars and else: another zoo

<u>Novae</u>

Nova Cygni 1992 (HST)

 $E \sim 10^{45}$ ergs Mass ejected = $10^{-4} - 10^{-5}$ Msun Nucl. contribution ~ C13, N15, O17

Jose & Hernanz 2007, Casanova et al. 2011

NS-NS mergers

Neutron Star Mergers: protons/neutrons ≤ 0.1

Source of gold? Gravitational waves... LIGO

Cowan et al. 2021 Rev of Mod Phys

X-ray binaries

Galloway et al. 2008

X-ray bursts E ~ 10³⁹ ergs Mass ejected = ? Nucl. contribution ? p nuclei ^{92,94}Mo and ^{96,98}Ru?

Schatz et al. 2001

... and many more... SNIa SD and DD scenario, R Crb stars, etc

CCSNe vs SNIa contributions: context

Trueman+ 2025, A&A 696

M=15Msun, Z=0.02 Ritter+2018 MNRAS MESA progenitor Fryer+12 explosion SNIa, Ch mass SD Keegans+ 2023 ApJS 268 Townsley 2D explosion Z=0.014

What do we need to know to have robust predictions for the abundance production in CCSNe?

(1) Updated nuclear reaction rates (e.g., deBoer et al. 2017 RvMP)

(2) stellar progenitor structure (e.g., Andrassy et al. 2020 MNRAS)

(3) CCSN engine (e.g., Burrows et al. 2021, Nature)

See Limongi and Roberti talks

(4) SN shock propagation (e.g.,Wongwathanarat et al. 2015 A&A)

THE ASTROPHYSICAL JOURNAL, 949:17 (16pp), 2023 May 20

ZAMS mass [M $_{\odot}$]

Boccioli et al.

What about the isotopes?

14 ₀ 1.18 m β ⁺	15 _Ο 2.04 m β ⁺	16 <mark>0</mark> 99.762 0.038 mb	17 ₀ 0.038	18 ₀ 0.2 0.00886 mb
13 _N 9.96 m β+	¹⁴ N 99.634 0.041 mb	15 _N 0.366 0.0058 mb	16 _N 7.13 s β ⁻	17 _N 4.17 s β ⁻
¹² C 98.89 0.0154 mb	¹³ C 1.11 0.021 mb	14 _C 5.70 ka 0.00848 mb, β ⁻	15 _C 2.45 s β ⁻	16 _C 747.00 ms β ⁻

-1.5

36

0.02

58

0.25

0.28

26.22 0.13

-1.0

[Fe/H]

-0.5

Reifarth+ 2000 ApJ 528 The ${}^{34}S(n,\gamma){}^{35}S$ rate made life really hard for ³⁶S.

0.0

0.5

³⁶ Ar	³⁷ Ar	³⁸ Ar	³⁹ Ar
0.3365%	34.95 d	0.0632%	269.01 a
9 mb	β ⁺	3 mb	8 mb, β ⁻
³⁵ Cl	³⁶ Cl	³⁷ Cl	³⁸ Cl
75.77%	301.01 ka	24.23%	37.24 m
10 mb	12 mb, β ⁻	2.15 mb	β ⁻
³⁴ S	³⁵ S	36S	³⁷ S
4.21%	87.51 d	0.02%	5.05 m
0.226 mb	β ⁻	0.171 mb	β ⁻

_

S

— **SN1A**

(x1.51)

32

33

75.54 1.15

95.02 0.75

34

4.21

57

Preliminary: No statistics yet!

14

Short-lived-radioactive isotopes ($T_{1/2} \sim 0.1$ -100 million years) observed in the Early Solar System (Lugaro+ 2018 PrPNP 102)

GCE contribution may be relevant for species with $T_{1/2} \ge 2$ Myr

SLR	Daughter	Reference	$T_{1/2}$ (Myr)
²⁶ Al	²⁶ Mg	²⁷ Al	0.72
36Cl	³⁶ S	³⁵ Cl	0.30
⁴¹ Ca	⁴¹ K	⁴⁰ Ca	0.099
⁵³ Mn	⁵³ Cr	⁵⁵ Mn	3.7
⁶⁰ Fe	⁶⁰ Ni	⁵⁶ Fe	2.6
⁹² Nb	⁹² Zr	⁹² Mo	34
97Tc	⁹⁷ Mo	⁹⁸ Ru	4.2
⁹⁸ Tc	⁹⁸ Ru	⁹⁸ Ru	4.2
¹⁰⁷ Pd	¹⁰⁷ Ag	¹⁰⁸ Pd	6.5
126Sn	¹²⁶ Te	¹²⁴ Sn	0.23
129I	¹²⁹ Xe	127 _I	15
135Cs	¹³⁵ Ba	133Cs	2.3
146Sm	142 Nd	144Sm	68
¹⁸² Hf	¹⁸² W	¹⁸⁰ Hf	8.9
²⁰⁵ Pb	²⁰⁵ Tl	²⁰⁴ Pb	17

2 supernova models shown here.
Total of 9 complete CCSN models made for the study

⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni
75.99 ka	26.223	1.14	3.634	100.11 a
87 mb, β ⁺	30 mb	82 mb	22.3 mb	31 mb, β ⁻
⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	⁶¹ Co	⁶² C0
70.86 d	100	5.27 a	1.65 h	1.50 m
β ⁺	38 mb	β ⁻	β ⁻	β ⁻
57 _{Fe}	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe
2.119	0.282	44.50 d	1.50 Ma	5.98 m
40 mb	12.1 mb	β ⁻	β ⁻	β ⁻
⁵⁶ Mn	57 _{Mn}	58 _{MD}	⁵⁹ Mn	⁶⁰ Mn
2.58 h	1.42 m	3.02 s	4.59 s	51.00 s
β ⁻	β ⁻	β ⁻	β ⁻	β ⁻
55Cr 3.50 m β ⁻	56Cr 5.94 m	⁵⁷ Cr 21.10 s β ⁻	⁵⁸ Cr 7.00 s β ⁻	⁵⁹ Cr 460.00 ms β ⁻

Fe60 in CCSNe: e.g., Timmes+ 1995, Limongi+2006, Tur+ 2010, Jones+ 2019 Variation of the 60 Fe produced, tested in 5 different models using 3 59 Fe(n, γ) 60 Fe rates.

Impact of the new Fe59(n, γ)Fe60 on <u>Fe60 yields</u>: Yan+ 2021, ApJ 919

See Spyrou+ 2024 NatCo 15 for a new Fe59(n,y)Fe60 rate

Neutron burst driven by the ²²Ne(α,n) in explosive He-burning: ¹³⁵Cs (r-process SLR?!)

Ritter+2018 MNRAS MESA progenitor Fryer+12 explosion The n-process in CCSNe: - Blake & Schramm 1976 ApJ - Meyer+ 2000 ApJ

- Pignatari+ 2018 GeCoA

134 _{La}	¹³⁵ La	136 _{La}	¹³⁷ La	¹³⁸ La
6.45 m	19.50 h	9.87 m	59.99 ka	102.01x10 ⁹ y
β ⁺	β ⁺	β ⁺	β ⁺	419 mb, β ⁺
¹³³ Ba	¹³⁴ Ba	¹³⁵ Ba	¹³⁶ Ba	¹³⁷ Ba
10.52 a	2.417%	6.592%	7.854%	11.232%
β ⁺	176 mb	455 mb	61.2 mb	76.3 mb
132 _{Cs}	133 _{Cs}	134Cs	135 <mark>Cs</mark>	¹³⁶ Cs
6.48 d	100%	2.07 a	2.30 Ma	13.04 d
β ⁺	509 mb	664 mb, β ⁻	198 mb, β ⁻	β ⁻
131Xe	132Xe	¹³³ Xe	134Xe	¹³⁵ Xe
21.232%	26.909%	5.24 d	10.436%	9.14 h
340 mb	64.6 mb	127 mb, β ⁻	20.2 mb	β ⁻
130 _I	131 _I	132 _I	133 _I	134 _I
12.36 h	8.02 d	2.29 h	20.80 h	52.50 m
β ⁻	β ⁻	β ⁻	β ⁻	β ⁻

Ti44 in CCSNe

CCSN remnant

Grefenstette+ 2014, Nature (NuSTAR data)

Cas A 11000 ly ~ 300 years ago

Red shows Fe Blue is Ti Green is Si

Ti44 production in CCSNe -Some references: Chieffi & Limongi 2017 ApJ Wongwathanarat+ 2017 ApJ Magkotsios+ 2010 ApJS

A&A 450, 1037–1050 (2006) DOI: 10.1051/0004-6361:20054626 © ESO 2006 Astronomy Astrophysics

Are ⁴⁴Ti-producing supernovae exceptional?*

L.-S. The¹, D. D. Clayton¹, R. Diehl², D. H. Hartmann¹, A. F. Iyudin^{2,3}, M. D. Leising¹, B. S. Meyer¹, Y. Motizuki⁴, and V. Schönfelder²

M=15Msun, Z=0.02 Ritter+ 2018 MNRAS

+ Impact from nuclear uncertainties: e.g., Magkotsios+ 2010 ApJS

+ Multi-D vs 1D CCSN effects: e.g., Sieverding et al. 2023 ApJL

BORBÁLA CSEH,^{8,2,7} ALESSANDRO CHIEFFI,⁹ CHRIS FRYER,⁹ FALK HERWIG,⁹ CHIARA INCOLLINGO,⁴ THOMAS LAWSON,³ MARCO LIMONGI,⁹ THOMAS RAUSCHER,⁹ MARIA SCHÖNBÄCHLER,⁴ ANDRE SIEVERDING,⁹ RETO TRAPPITSCH,⁹ AND

MARIA LUGARO^{10, 2, 11, 12}

SIMPLE tool (open source) Pignatari+ 2025, in prep.

<u>RI18</u>: Ritter+ 2018; <u>PI16</u>: Pignatari+ 2016; <u>LA22</u>: Lawson+ 2022; <u>SI18</u>: Sieverdin+ 2018; CHETEC LC18: Limongi&Chieffi 2018; RA02: Rauscher+ 2002. INFRA

Activation of the y-process in stars: CCSNe or SNIa?

 γ -process vs CCSNe setup

Battino+ 2020 MNRAS γ -process in SD SNIa (s+i-process seeds built in the accretion stage)

See Cristallo's talks

Conclusions

- Explosive nucleosynthesis does not make all elements and isotopes!
- CCSNe are the first sources of metals in the Galaxy. SNIa and other explosive sources are activated later, contributing to GCE
- Elements and isotopes: GCE of the isotopes is a powerful benchmark for models and nuclear physics
- The case of the SLRs in the Early Solar System (e.g., Fe60 and Cs135), of Ti44 and Na22.
- Beyond iron: the explosive γ -process.

ANNOUNCING: GEOASTRONOMY

A <u>NEW</u> ERC Synergy project, starting in 2025 and running for 6 years!

EXOPLANET MAGMAS

Laboratory experiments of

outgassing from planetary

cPI. Steve Mojzsis (CSFK, Hungary)

TRANSLATE COMPOSITION OF STARS TO PLANETS

Planetary geochemistry and nuclear astrophysics of exoplanets.

interiors

PI. Fabrice Gaillard (CNRS, France)

PI. Kevin Heng (LMU, Germany)

INTERPRET SPECTRA OF EXOPLANET ATMOSPHERES Theory of exoplanet atmospheres

Exoplanetary systems can be markedly different from our own A non-Earth-centric view is REQUIRED to make progress We are recruiting Junior and Senior Staff Research Associates and Ph.D. students

Monthly Notices

of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **524**, 6295–6330 (2023) Advance Access publication 2023 July 21

https://doi.org/10.1093/mnras/stad2167

• 16 authors

•

5 PhD/young PDRA

Target communities: nuclear astrophysics & planet formation/modeling

The chemical evolution of the solar neighbourhood for planet-hosting stars

Marco Pignatari,^{1,2,3,4,5} Thomas C. L. Trueman,^{1,3,4} Kate A. Womack¹⁰, ³ Brad K. Gibson,^{3,5} Benoit Côté,^{1,4,5,6} Diego Turrini,^{7,8,9} Christopher Sneden,¹⁰ Stephen J. Mojzsis,^{1,2,11} Richard J. Stancliffe,^{4,12} Paul Fong,^{3,4} Thomas V. Lawson¹⁰,^{3,4,13} James D. Keegans,^{4,14} Kate Pilkington,¹⁵ Jean-Claude Passy,¹⁶ Timothy C. Beers^{5,17} and Maria Lugaro^{1,2,18,19}

Experimental Astronomy (2022) 53:225–278 https://doi.org/10.1007/s10686-021-09754-4

ORIGINAL ARTICLE

Diego Turrini^{1,2} • Claudio Codella³ · Camilla Danielski⁴ • Davide Fedele^{2,3} · Sergio Fonte¹ · Antonio Garufi³ · Mario Giuseppe Guarcello⁵ · Ravit Helled⁶ · Masahiro Ikoma⁷ · Mihkel Kama^{8,9} · Tadahiro Kimura⁷ · J. M. Diederik Kruijssen¹⁰ · Jesus Maldonado⁵ · Yamila Miguel^{11,12} • . Sergio Molinari¹ · Athanasia Nikolaou^{13,14} · Fabrizio Oliva¹ · Olja Panić¹⁵ · Marco Pignatari^{16,17,18} · Linda Podio³ · Hans Rickman¹⁹ · Eugenio Schisano¹ · Sho Shibata⁷ · Allona Vazan²⁰ · Paulina Wolkenberg¹

Effect of stellar yields & the Mg puzzle

- 6 stellar yield sets
- the solar [C/O] is obtained using 4 sets
- by using 2 other sets we get closer to the solar [Mg/Si], but none of them show enough Mg

Mg puzzle!

Old problem, identified first from using WW95 CCSNe yields (e.g., Gibson+ 1997 MNRAS 290 and several works following)

Nuclear astrophysics point of view: it should not be that difficult..

- C: product of $3\alpha \rightarrow {}^{12}C$ reaction (preSN partial He-burning)
- O: product of the ¹²C(α,γ)¹⁶O reaction (preSN He-burning)
- Mg: product of the ²⁰Ne(α,γ)²⁴Mg reaction (preSN C/Ne-burning)
- **Si**: product of ¹⁶O+¹⁶O (explosive O-burning)

M=15Msun, Z=0.02 Ritter+2018 MNRAS 480 MESA progenitor Fryer+12 explosion

The zoo of solar normalizations

