<u>Tevatron results and the</u> consolidation of the Standard <u>Model</u>

Tevatron day

Padova, 20/12/2011

Michelangelo L. Mangano

TH Unit, Physics Department, CERN

michelangelo.mangano@cern.ch

SM determined by a fixed set of parameters:

- 3 gauge couplings: α_{em} , α_s , sin θ_W
- + || masses: mw, mquarks, mleptons, mHiggs
- + 4 CKM mixings and CP-odd phase
- + | Higgs selfcoupling λ_H

= |9

 $g=e/sin\theta_W \Rightarrow$ coupling of weak interactions

 $M_Z = M_W / \cos \theta_W$

Everything else:

- Triple gauge boson couplings
- Michel parameters
- BR(B_S $\rightarrow \mu^+\mu^-$), etc.
- PDFs
- $\sigma(W), \sigma(ttbar),$

follows from the above inputs and from the SM dynamics

The Tevatron programme of "SM measurements" addressed:

- I. discovery of yet unknown particles (top and Higgs), and the measurement of their properties
- 2. improved determination of known ones: m_z , m_w , $sin\theta_w$, CKM, and ensuing validity tests of the SM
- 3. Challenging the SM: searches, etc
- 4. Challenging our ability to describe SM dynamics:
 - 4.1. to assess and improve the quality of theoretical calculations
 - 4.2. to constrain or detect BSM physics, through the study of deviations from the expected SM behaviour
 - 4.3. to learn about non-perturbative aspects of QCD, still incalculable from first principles (PDF, MB, diffraction,)

At the time of the Tevatron turn-on, the following parameters had not been <u>directly</u> measured

- m_{top}
- V_{tb}
- V_{td} , V_{ts}
- тн, λн

The following parameters were known with limited accuracy, or indirectly (e.g. assuming 3 generations)

- mz = 93 ± 3 GeV
- mw = 83 ± 3 GeV
- V_{tb/d/s}

From the point of view of dynamics, the only process known to NLO was Drell-Yan (W and Z production), tested with limited accuracy because of

- Large statistical uncertainty
- Large PDF uncertainties (only LO PDFs were available until 1989)

mZ and mW

At tree level,

 $g_v^e = -1/2 + 2 \sin^2 \theta_w$ $g_A^e = -1/2$ $m_w/m_z = \cos \theta_w$

vector and axial coupling to Z boson, measured e.g. in $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^$ angular distributions

At one loop and beyond, these relation receive corrections proportional to

m_t² and **log m_H**

The mismatch between $cos\theta_W$ determined from m_W/m_Z and from the measurement of couplings provides therefore an indirect determination of m_{top} and m_H

mZ, up to LEP

1989	UAI	93.1 ± 1 ± 3	24 events
1989	CDF	90.0 ±0.3 ±0.2	188 events
1989	Mk2	91.14 ± 0.12	480 events
2000	LEP	91.1876 ± 0.0021	~20M events

mW, the beginning

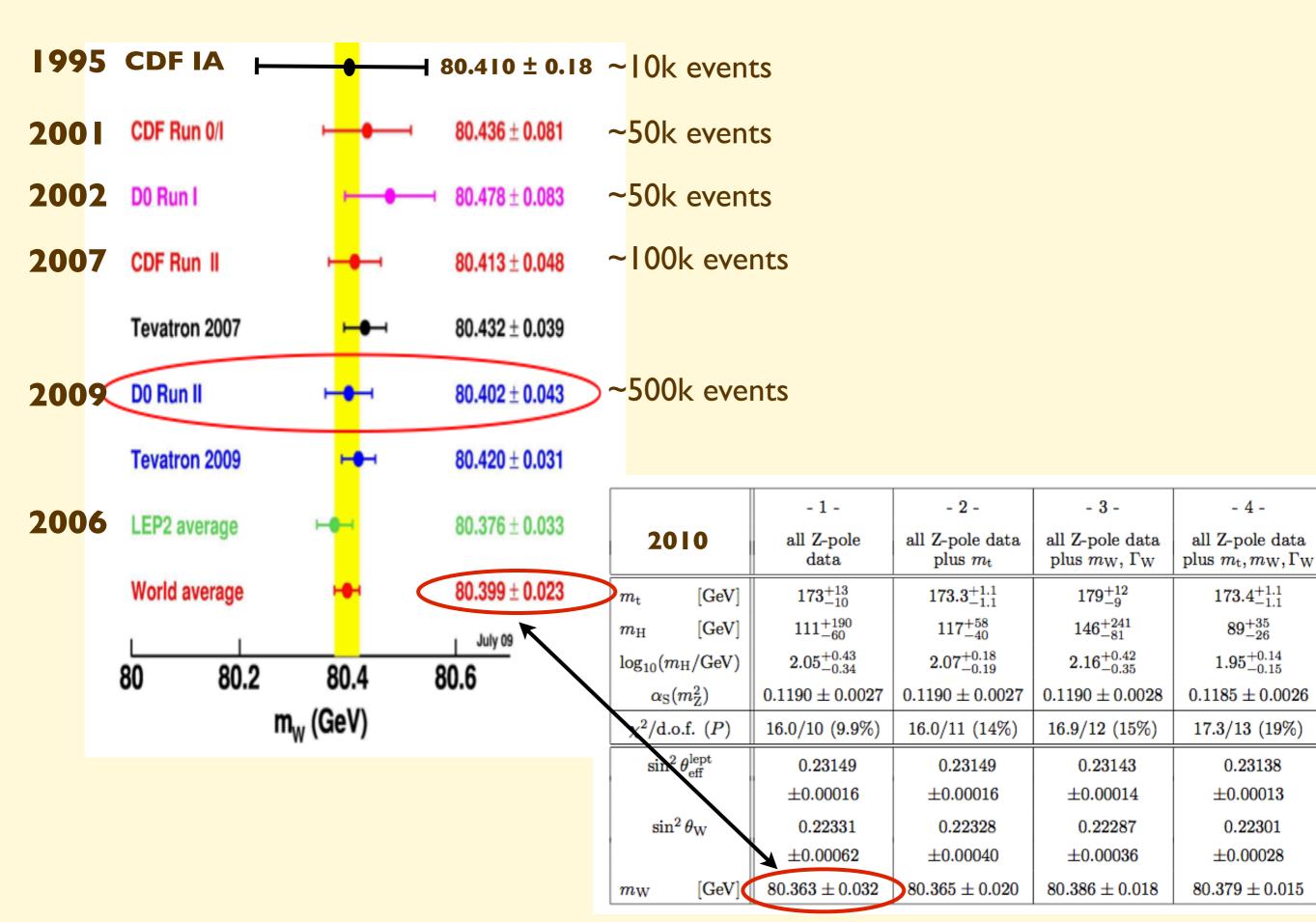
1983	UAI	81±5	6 events
1989	UAI	82.7 ± l ± 2.7	150 events
1989	CDF	80.0 ± 3.3 ± 2.4	22 events
1990	UA2	80.79 ± 0.31 ± 0.84	2065 events
1990	CDF	79.91 ± 0.39 (40/30/30% stat/syst/scale)	4pb⁻¹ (e/mu 88/89 run)

UA2+CDF+ LEP(mZ):

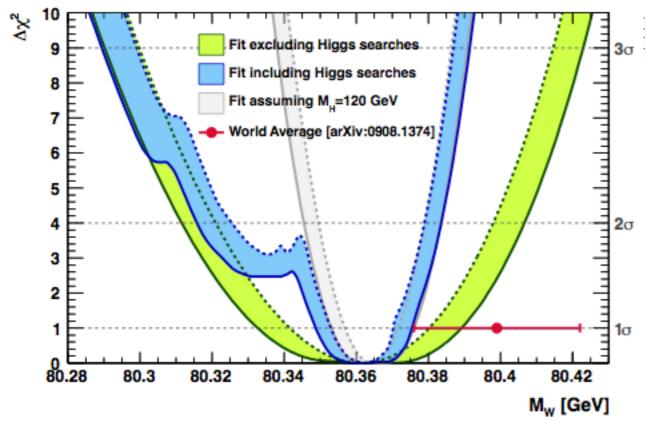
 $mW/mZ = cos\theta_W$ (so-called on-shell ren scheme)

 \Rightarrow sin² θ_{W} = 0.227±0.006

 \Rightarrow m_{top} < 220 GeV for m_H below I TeV


By 1994 a new challenge starts, due to precision EW measurements

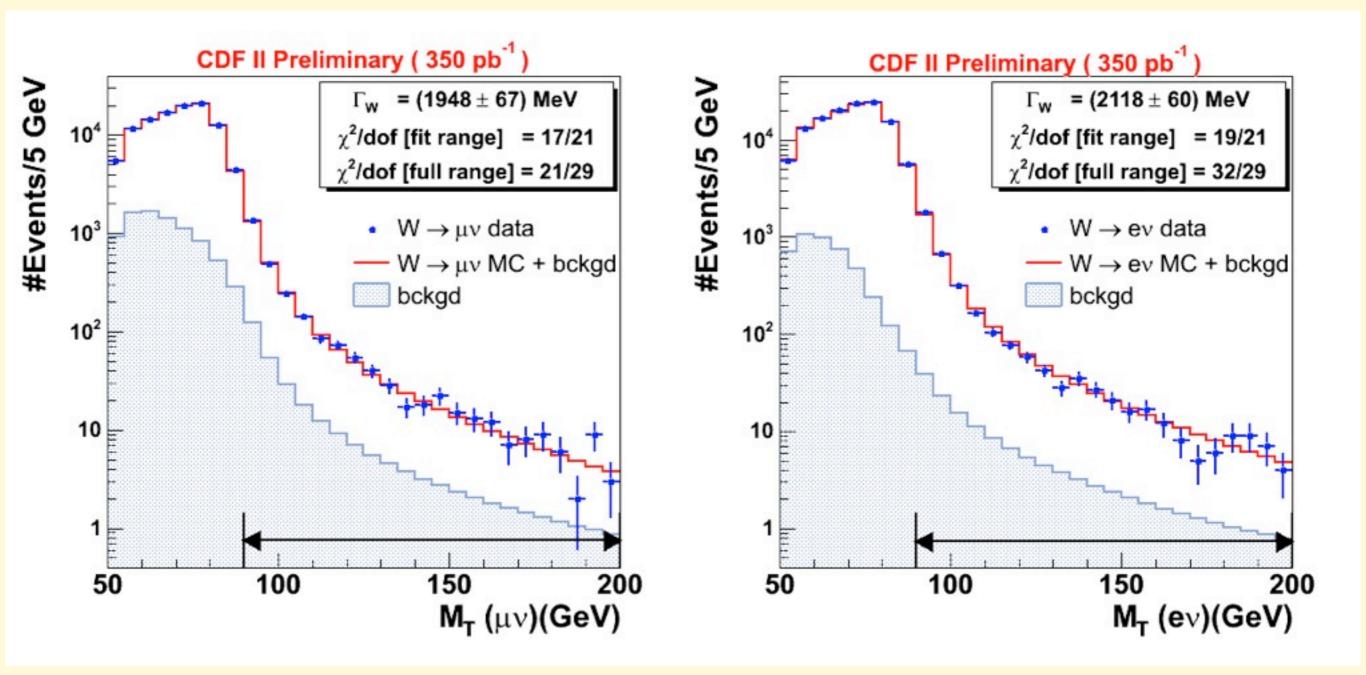
		LEP	LEP
			+ SLD
ſ	$m_{\rm t}$ (GeV)	$170 \pm 10 \ {}^{+17}_{-19}$	$180 \stackrel{+8}{_{-9}} \stackrel{+17}{_{-20}}$
	$lpha_s(m_{ m Z}^2)$	$0.125 \pm 0.004 \ \pm 0.002$	$0.123 \pm 0.004 \ \pm 0.002$
	$\chi^2/{ m d.o.f.}$	18/9	28/12
	$\sin^2 \theta_{eff}^{lept}$	$0.23206 \pm 0.00028 ~^{+0.00008}_{-0.00017}$	$0.23166 \pm 0.00025 {}^{+0.00006}_{-0.00013}$
	$1-m_{\mathrm{W}}^2/m_{\mathrm{Z}}^2$	$0.2247 \pm 0.0010 \ {}^{+0.0004}_{-0.0002}$	$0.2234 \pm 0.0009 ~^{+0.0005}_{-0.0002}$
	m_{W} (GeV)	$80.295 \pm 0.057 \ {}^{+0.011}_{-0.019}$	$80.359 \pm 0.051 \ {}^{+0.013}_{-0.024}$


1995 LEP EW WG

1995 CDF IA M_W**= 80.410 ± 0.18** ~10k events

mW, pushing further

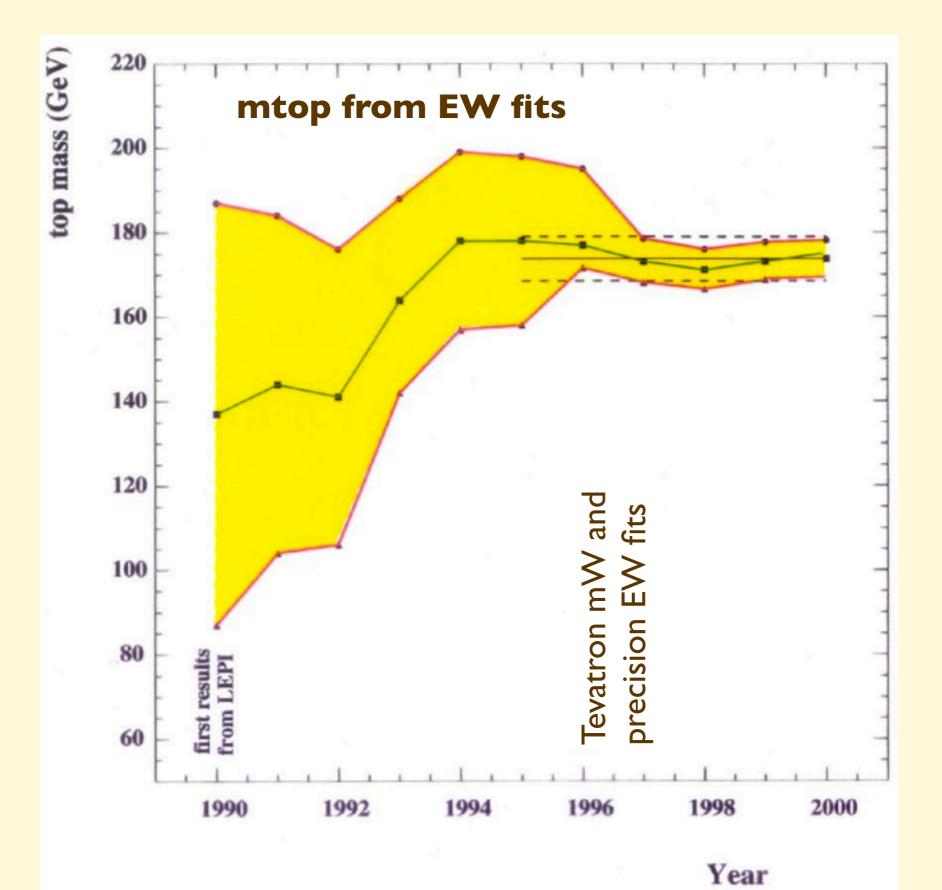
Implications of current mW measurements



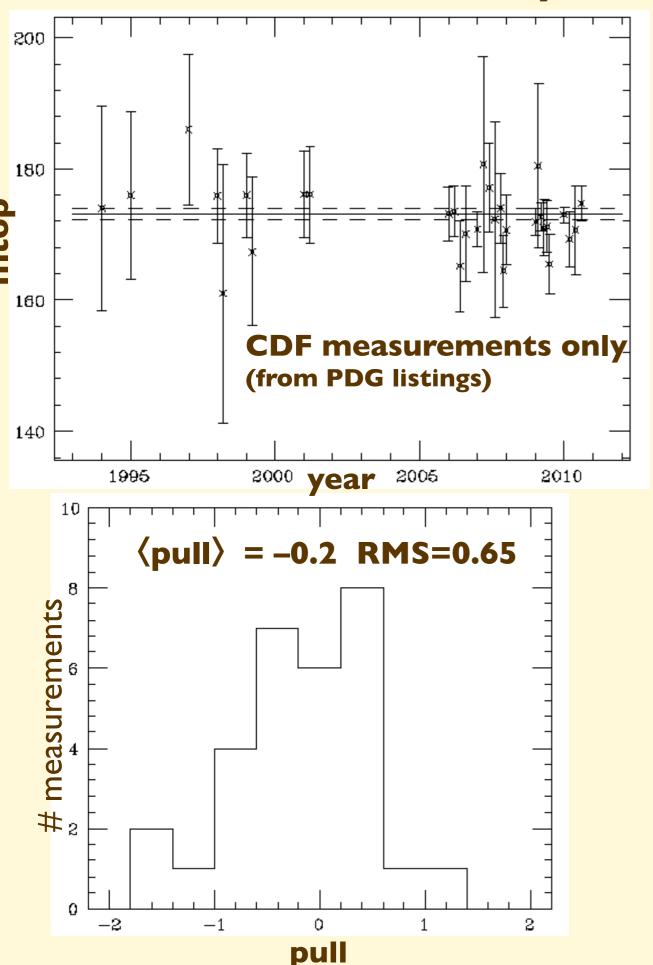
The Gfitter Group arXiv:1107.0975v1

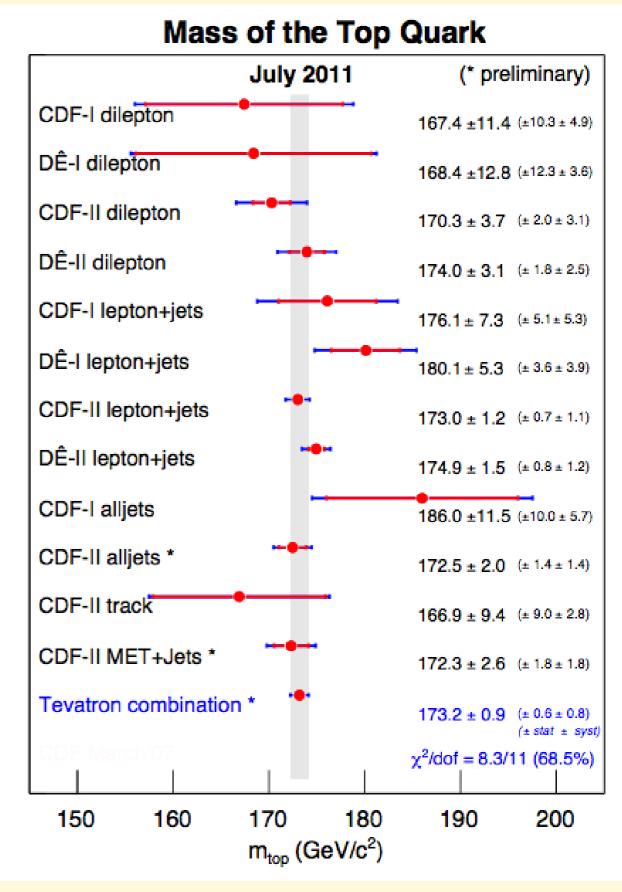
The Gfitter Group arXiv:1107.0975v1 M. Baak^a, M. Goebel^{b,c}, J. Haller^{c,d}, A. Hoecker^a, D. Ludwig^{b,c}, K. Mönig^b, M. Schott^a, J. Stelzer^e From the EW fit, $M_{W, fit} = 80.362 \pm 0.013$ G 1.60 lower than direct m $M_W^{direct} = 80.399 \pm 0.023$ Notice that LEP2 only would 80.376 ± 0.033 $M_{VV, fit} = 80.362 \pm 0.013 \text{ GeV}$ 1.6σ lower than direct measurement, $M_W^{direct} = 80.399 \pm 0.023 \text{ GeV}$

Notice that LEP2 only would be ~OK, with


W width

 $\Gamma_{\rm W} = 2032 \pm 73 \; {\rm MeV}/{\rm c}^2$


The most precise direct measurement of the W width

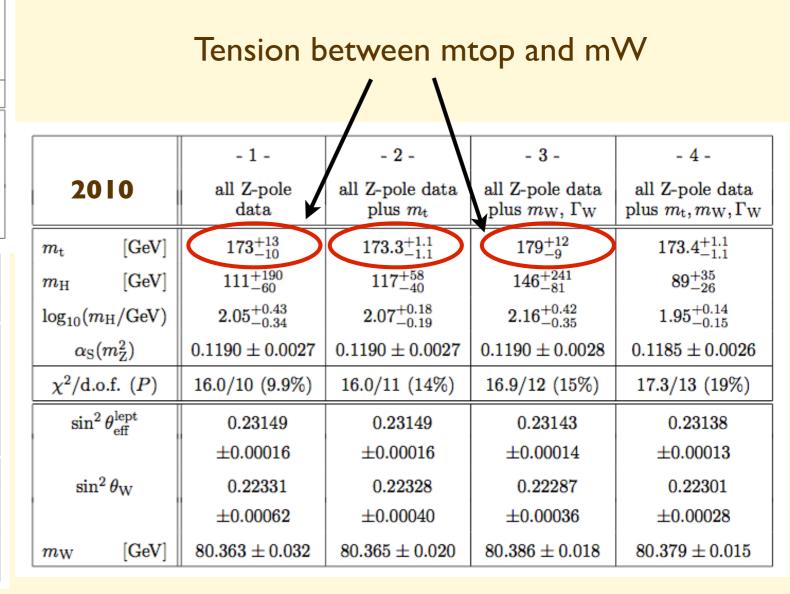

The role of mtop

12

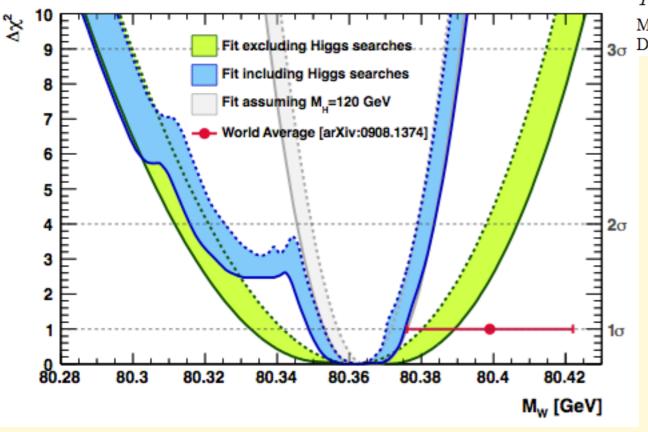
CDF history of mtop measurements

The role of mtop

Table 10.5: Values of \hat{s}_Z^2 and s_W^2 (in parentheses), α_s , and m_t for various combinations of observables. The central values are for $M_H = 300$ GeV, and the second set of errors is for $M_H \rightarrow 1000(+)$, 60(-).

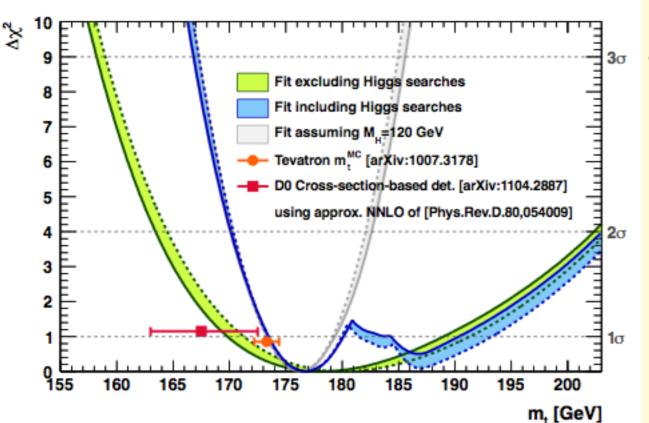

Data	$\widehat{s}_{Z}^{2}~(s_{W}^{2})$	$\alpha_s \ (M_Z) \qquad m_t \ ({\rm GeV})$
$\mathrm{Indirect} + \mathrm{CDF} + \mathrm{D} \emptyset$	$\begin{array}{c} 0.2315(2)(3) \\ (0.2236 \pm 0.0008) \end{array}$	$0.123(4)(2) 180 \pm 7^{+12}_{-13}$
All indirect	$\begin{array}{c} 0.2315(2)(2) \\ (0.2236 \pm 0.0009) \end{array}$	$0.123(4)(2) 179 \pm 8^{+17}_{-20}$
All LEP	$\begin{array}{c} 0.2318(3)(2) \\ (0.2246 \pm 0.0011) \end{array}$	$0.124(4)(2) 171 \pm 10^{+18}_{-20}$
$SLD + M_Z$	$\begin{array}{c} 0.2302(5)(0) \\ (0.2184 \pm 0.0020) \end{array}$	-220^{+14+19}_{-15-24}
Z pole (LEP + SLD)	$\begin{array}{c} 0.2314(3)(1) \\ (0.2234 \pm 0.0010) \end{array}$	$0.123(4)(2) 181^{+8+18}_{-9-20}$

PDG 1996

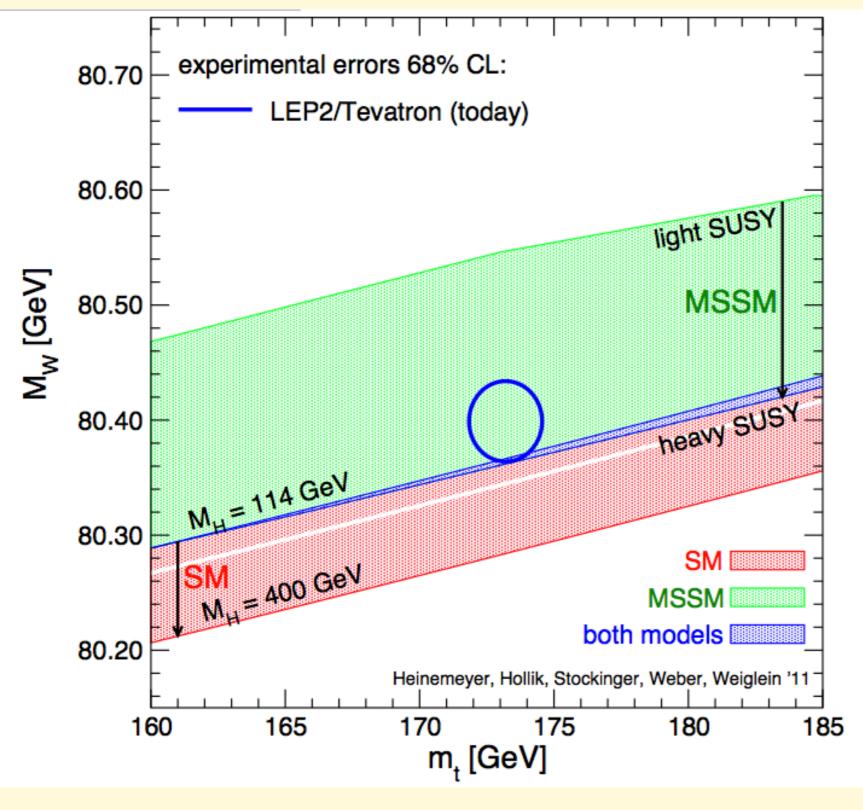

1995	LEP	LEP + SLD	2002	- 1 - LEP including LEP-II m _W , Γ _W	- 2 - all Z-pole data	-3 - all Z-pole data plus $m_{\rm t}$	- 4 - all Z-pole data plus $m_{\rm W}$, $\Gamma_{\rm W}$	- 5 - all data except NuTeV	- 6 - all data
			$m_{\rm t}$ [GeV]	184^{+13}_{-11}	171^{+11}_{-9}	$173.6^{+4.7}_{-4.6}$	180^{+11}_{-9}	$175.4^{+4.3}_{-4.2}$	$174.3^{+4.5}_{-4.3}$
$m_{\rm t}$ (GeV)	$170 \pm 10 \ {}^{+17}_{-19}$	$180 \stackrel{+8}{9} \stackrel{+17}{20}$	$m_{ m H}$ [GeV]	228^{+367}_{-136}	81^{+107}_{-40}	$99\substack{+64 \\ -40}$	$117\substack{+161 \\ -63}$	78^{+48}_{-31}	81^{+52}_{-33}
$\alpha_s(m_{ m Z}^2)$	$0.125 \pm 0.004 \ \pm 0.002$	$0.123 \pm 0.004 \ \pm 0.002$	$\log(m_{ m H}/{ m GeV})$	$2.36\substack{+0.42\\-0.39}$	$1.91\substack{+0.37\\-0.30}$	$1.99\substack{+0.22\\-0.23}$	$2.07\substack{+0.38 \\ -0.33}$	$1.89\substack{+0.21 \\ -0.22}$	$1.91\substack{+0.22 \\ -0.23}$
$\chi^2/\text{d.o.f.}$	18/9	28/12	$lpha_{ m S}(m_{ m Z}^2)$	0.1199 ± 0.0030	0.1186 ± 0.0027	0.1187 ± 0.0027	0.1185 ± 0.0027	0.1181 ± 0.0027	0.1183 ± 0.0027
$\sin^2 \theta_{\text{eff}}^{\text{lept}}$	r	,	χ^2 /d.o.f. (P)	13.3/9 (15%)	14.8/10 (14%)	14.9/11 (19%)	17.9/12 (12%)	20.5/14 (11%)	29.7/15 (1.3%)
	$0.23206 \pm 0.00028 \substack{+0.00008 \\ -0.00017}$	$0.23166 \pm 0.00025 \substack{+0.00006 \\ -0.00013}$	$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	0.23160	0.23145	0.23145	0.23135	0.23131	0.23136
$\left 1-m_{\mathrm{W}}^2/m_{\mathrm{Z}}^2 ight $	$0.2247 \pm 0.0010 ~^{+0.0004}_{-0.0002}$	$0.2234 \pm 0.0009 ~^{+0.0005}_{-0.0002}$		± 0.00018	± 0.00016	± 0.00016	± 0.00015	± 0.00015	± 0.00015
$m_{\rm W}$ (GeV)	$80.295 \pm 0.057 \ {}^{+0.011}_{-0.019}$	$80.359 \pm 0.051 \ {}^{+0.013}_{-0.024}$	$\sin^2 heta_{ m W}$	0.22284	0.22313	0.22299	0.22240	0.22255	0.22272
				± 0.00053	± 0.00063	± 0.00045	± 0.00045	± 0.00036	± 0.00036
			$m_{ m W}$ [GeV]	80.388 ± 0.027	80.373 ± 0.032	80.380 ± 0.023	80.410 ± 0.023	80.403 ± 0.019	80.394 ± 0.019

2006		- 1 2 -		- 3 -	- 4 -	
		$\begin{array}{c c} \text{all Z-pole} \\ \text{data} \end{array} \begin{array}{c c} \text{all Z-pole data} \\ \text{plus } m_{\mathrm{t}} \end{array} \begin{array}{c} \text{all Z-pole data} \\ \text{plus } m_{\mathrm{W}}, \Gamma_{\mathrm{W}} \end{array}$		all Z-pole data plus $m_{\rm t}, m_{\rm W}, \Gamma_{\rm W}$		
$m_{ m t}$ [GeV]		173^{+13}_{-10}	$171.4^{+2.1}_{-2.1}$	178^{+12}_{-9}	$171.7^{+2.0}_{-2.0}$	
$m_{ m H}$	[GeV]	111_{-60}^{+190}	103^{+54}_{-37}	137^{+228}_{-76}	85^{+39}_{-28}	
$\log(m)$	$_{\rm H}/{ m GeV}$)	$2.05\substack{+0.43 \\ -0.34}$	$2.01\substack{+0.18 \\ -0.19}$	$2.14\substack{+0.43 \\ -0.35}$	$1.93\substack{+0.16\\-0.17}$	
$\alpha_{ m S}$	$(m_{ m Z}^2)$	0.1190 ± 0.0027	0.1190 ± 0.0027	0.1190 ± 0.0028	0.1186 ± 0.0027	
χ^2/d .	o.f. (P)	16.0/10 (9.9%)	16.0/11 (14%)	17.4/12 (14%)	17.8/13 (17%)	
sin ²	$^2 heta_{ ext{eff}}^{ ext{lept}}$	0.23149	0.23149	0.23145	0.23141	
		± 0.00016 ± 0.00016 ± 0.00014		± 0.00014		
$\sin^2 heta_{ m W}$		0.22331 0.22336		0.22298	0.22316	
		± 0.00062	± 0.00039	± 0.00041	± 0.00031	
$m_{ m W}$	[GeV]	80.363 ± 0.032	80.361 ± 0.020	80.380 ± 0.021	80.371 ± 0.016	

	- 1 -	- 2 -	- 3 -	- 4 -
2008	all Z-pole data			all Z-pole data plus $m_{ m t}, m_{ m W}, \Gamma_{ m W}$
$m_{ m t}$ [GeV]	173^{+13}_{-10}	$172.4^{+1.2}_{-1.2}$	179^{+12}_{-9}	$172.5^{+1.2}_{-1.2}$
$m_{ m H}$ [GeV]	111^{+190}_{-60}	110^{+55}_{-38}	144_{-81}^{+240}	84^{+34}_{-26}
$\log_{10}(m_{ m H}/{ m GeV})$	$2.05\substack{+0.43\\-0.34}$	$2.04\substack{+0.18 \\ -0.19}$	$2.16\substack{+0.42 \\ -0.35}$	$1.93\substack{+0.15 \\ -0.16}$
$lpha_{ m S}(m_{ m Z}^2)$	0.1190 ± 0.0027	0.1190 ± 0.0027	$0.1190 \pm 0.0027 0.1190 \pm 0.0028$	
$\chi^2/{ m d.o.f.}~(P)$	16.0/10 (9.9%)	16.0/11 (14%)	16.8/12 (16%)	17.3/13 (18%)
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	0.23149	0.23149	0.23143	0.23139
	± 0.00016 ± 0.00016 ± 0.00014		± 0.00013	
$\sin^2 \theta_{ m W}$	$\sin^2 \theta_{\rm W}$ 0.22331 0.22332		0.22289	0.22306
	± 0.00062	± 0.00039	± 0.00038	± 0.00029
$m_{\rm W}$ [GeV]	80.363 ± 0.032	80.363 ± 0.020	80.385 ± 0.020	80.376 ± 0.015


Implications of current mW measurements

The Gfitter Group arXiv:1107.0975v1 M. Baak^a, M. Goebel^{b,c}, J. Haller^{c,d}, A. Hoecker^a, D. Ludwig^{b,c}, K. Mönig^b, M. Schott^a, J. Stelzer^e


From the EW fit, $M_{W, fit} = 80.362 \pm 0.013 \text{ GeV}$ 1.6σ lower than direct measurement, $M_W^{direct} = 80.399 \pm 0.023 \text{ GeV}$

Notice that LEP2 only would be ~OK, with 80.376 ± 0.033

No significant tension, instead, between the "direct" and "fit" values of m_{top}

Putting all together

For equal contribution to the Higgs mass uncertainty need: $\Delta M_w \approx 0.006 \Delta M_t$.

Current Tevatron average: $\Delta M_t = 0.9 \text{ GeV}$ $\Rightarrow \text{ would need: } \Delta M_w = 5 \text{ MeV}$ Currently have: $\Delta M_w = 23 \text{ MeV}$

At this point, *i.e.* after all the precise top mass measurements from the Tevatron, the limiting factor here is ΔM_w , not ΔM_t .

Remarks

- δm_{top} from EW fits ~ ± 10 GeV
- δm_W from EW fits ~ ± 20 MeV
- What's really important is not just how accurately we can infer m_{top,W} from EW fits, but how accurately we can test these predictions! Without the direct measurements we couldn't tell whether the SM is consistent, and we'd have no clue on mH
- m_{top} is known today with accuracy greatly exceeding the immediate needs. Further progress should come from improvements in m_W

• The same remarks apply to observables in the flavour sector, namely CKM entries ...

Contributions to CKM studies. An example

$$A_{CP} = \frac{N(\overline{B}^0 \to J/\psi K_S^0) - N(B^0 \to J/\psi K_S^0)}{N(\overline{B}^0 \to J/\psi K_S^0) + N(B^0 \to J/\psi K_S^0)} = \sin 2\beta$$

1999: SM prediction: $0.59 \lesssim \sin 2\beta \lesssim 0.82$.

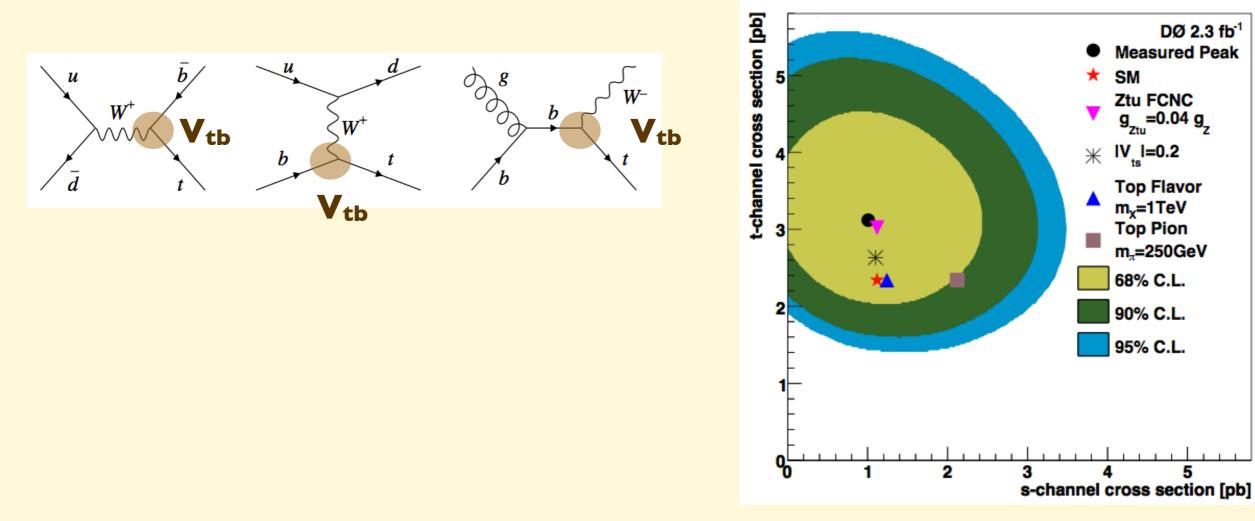
CDF, 1999: first observation of CP violation in the B system:

 $\sin 2\beta = 0.79 {+0.41 \atop -0.44} ({\rm stat+syst})$

=> spot on SM value!

July 2000: first results from B factories:

BaBar: $a_{\psi K_S} = 0.12 \pm 0.38$. !!!


=> flourishing of BSM speculations

Babar, Belle, CDF average: $a_{\psi K_S} = 0.42 \pm 0.24$,

Current world average:

 $\sin 2\beta = 0.673 \pm 0.023$

Top EW couplings

http://arxiv.org/pdf/1010.2999

Table 2:	Measurements	\mathbf{of}	$ V_{tb} $	from	CDF	and
DØ single	-top results.					

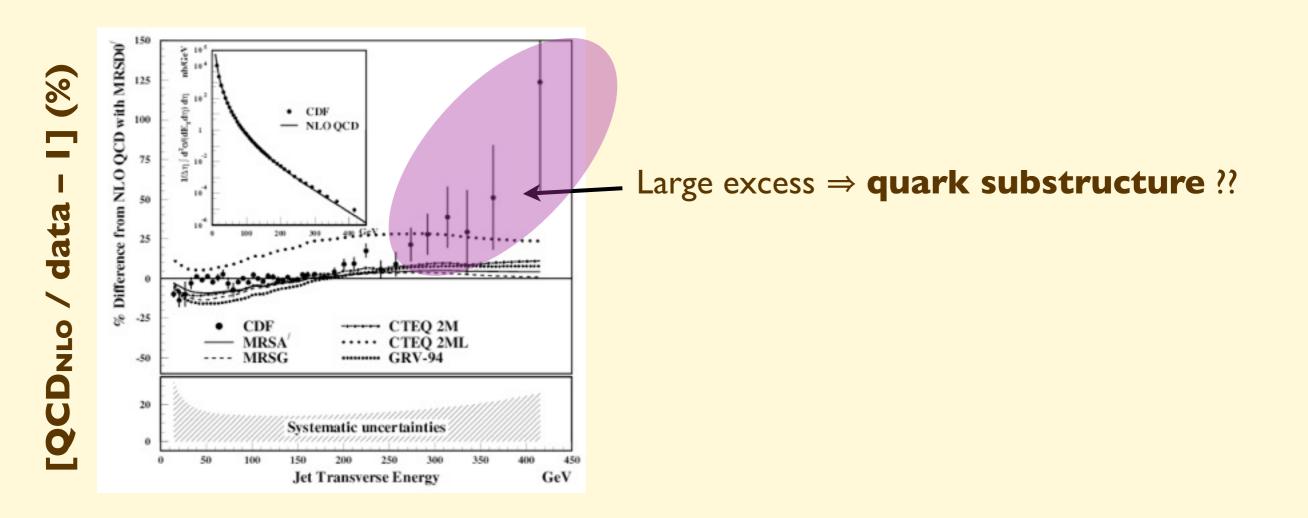
$\left V_{tb} ight $ or $\left V_{tb}f_{1}^{L} ight $	S	ource	$\int \mathcal{L} dt \ (fb^{-1})$	Ref.
$ V_{tb}f_1^L = 1.07 \pm 0.12$	DØ	Run II	2.3	[14]
$ V_{tb} > 0.78$	DØ	Run II	2.3	[14]
$ V_{tb} = 0.91 \pm 0.13$	CDF	Run II	3.2	[15]
$ V_{tb} = 0.88 \pm 0.07$	CDF +	DØ Run II	3.2	[55]
$ V_{tb} > 0.77$	CDF +	DØ Run II	3.2	[55]

Top decay width

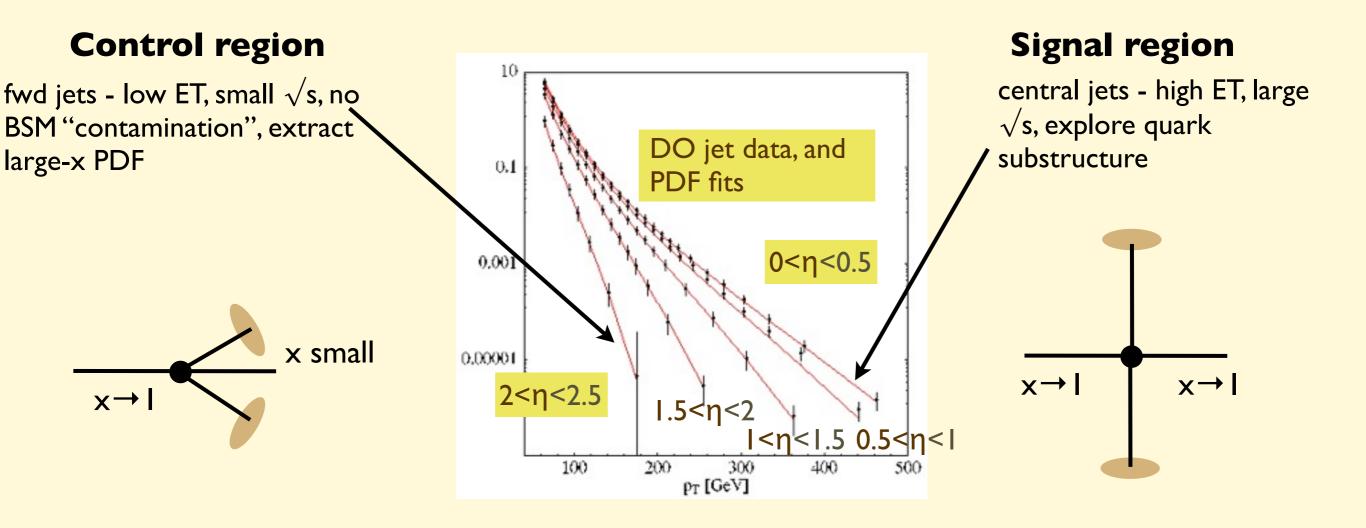
t→bW

$$\Gamma_t = \frac{G_F m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{M_W^2}{m_t^2} \right)^2 \left(1 + 2\frac{M_W^2}{m_t^2} \right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2} \right) \right]$$

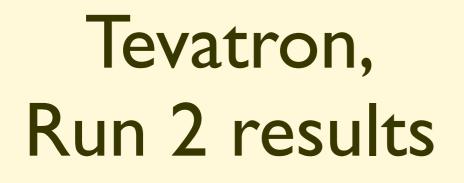
2)
$$\Gamma_{top} \sim 1.34 \text{ GeV} > T_{had}^{-1} \sim \Lambda_{QCD}$$

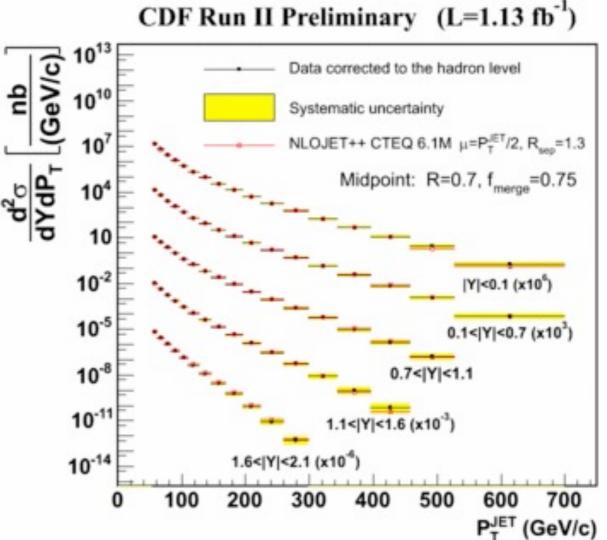

t-quark DECAY WIDTH

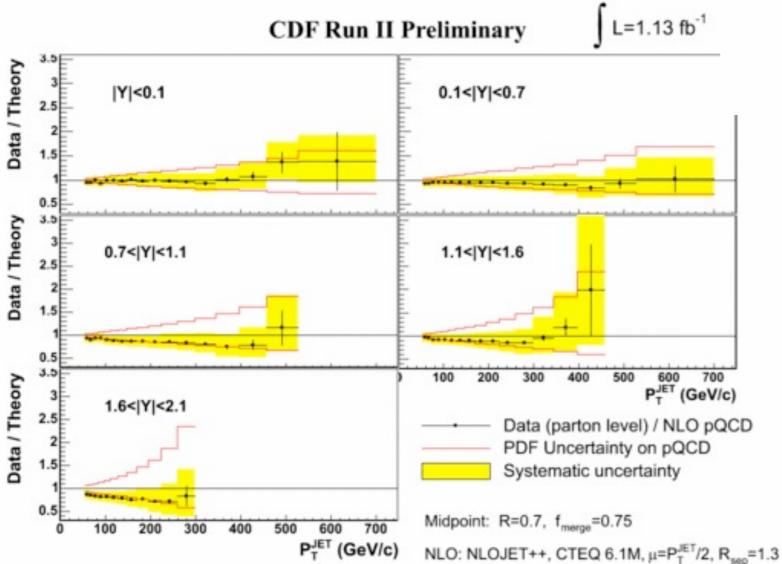
VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT1.99+0.691ABAZOV11BD0 $\Gamma(t \rightarrow Wb)/B(t \rightarrow Wb)$ 1Based on 2.3 fb⁻¹ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. ABAZOV 11B extracted Γ_t from the partial width $\Gamma(t \rightarrow Wb) = 1.92^{+0.58}_{-0.51}$ GeV measured using the t-
channel single top production cross section, and the branching fraction brt $\rightarrow Wb =$ $0.962^{+0.068}_{-0.066}(\text{stat})^{+0.064}_{-0.052}(\text{syst})$. The $\Gamma(t \rightarrow Wb)$ measurement gives the 95% CL
lowerbound of $\Gamma(t \rightarrow Wb)$ and hence that of Γ_t .

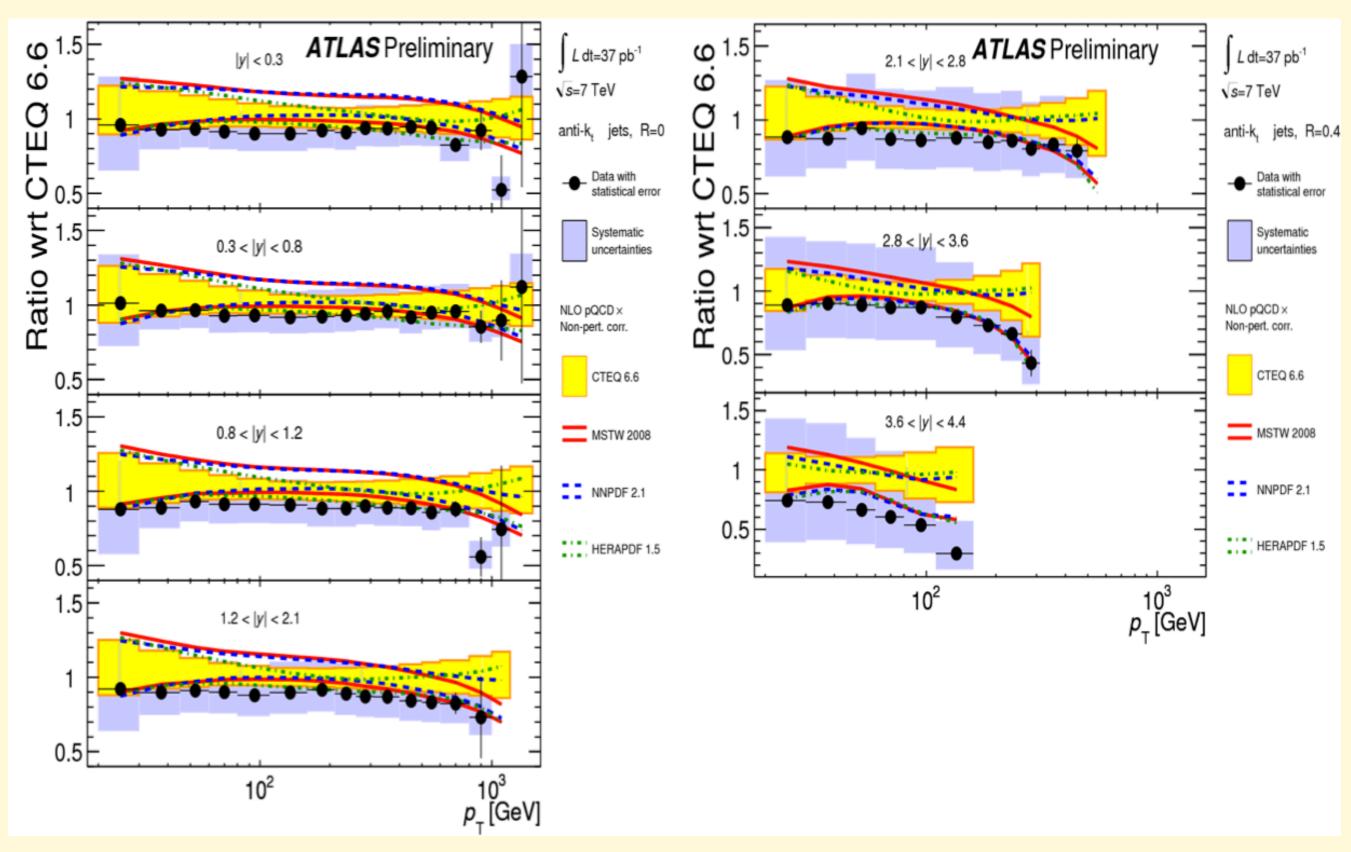

⇒Top quark decays before hadronizing: there are no top-hadrons

Exploring the quark structure: how pointlike is it?

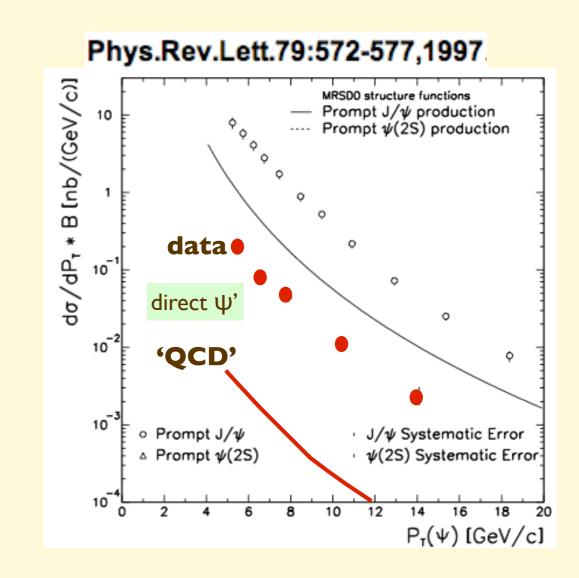

Analysis of large-ET jet production at the Tevatron




Effect later understood as poor knowledge/ parameterization of the gluon density of the proton at $x \rightarrow I$, using asymmetric, low-ET final states:


A prototype for self-consistent, robust and credible bg determination ...

Strategy carried over to the LHC



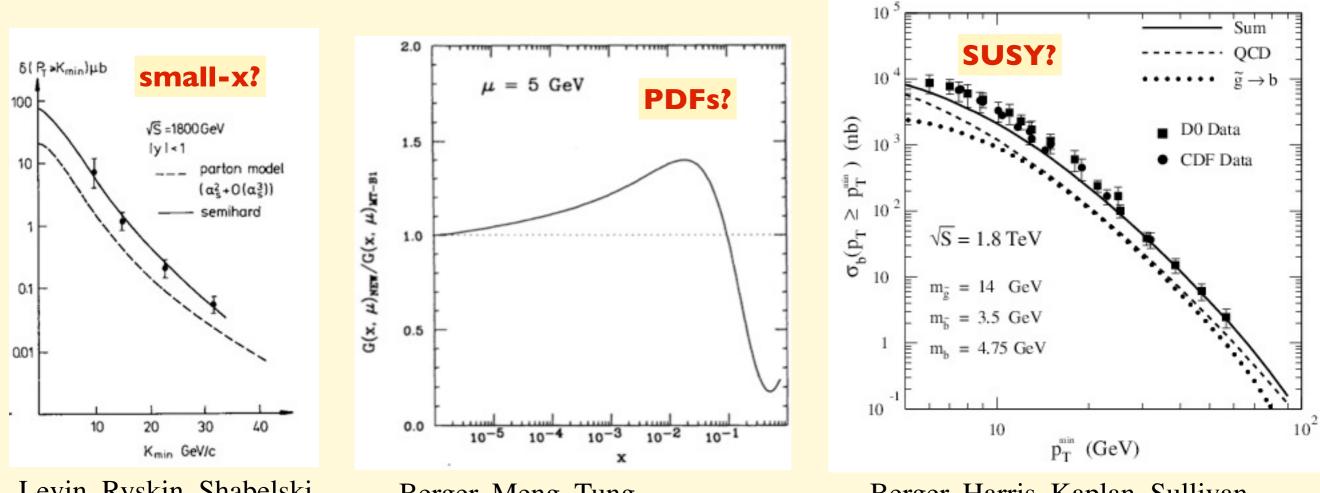
SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$ Limits are for Λ_{LL}^{\pm} with color-singlet isoscalar exchanges among u_L 's and d_L 's only,								
unless otherwise noted. See EICHTEN 84 for details. VALUE (TeV) CL% DOCUMENT ID TECN COMMENT								
>4.0	95		10A		pp ; dijet centrality. Λ_{LL}^+			
• • • We do not use	the follow							
>2.96	95	³² ABAZOV	09 AE	D0	$p\overline{p} \rightarrow dijet$, angl. Λ_{LL}^+			
>2.0	95	³³ АВВОТТ	00E	D0	H_T distribution; Λ_{LL}^+			
>2.7	95	³⁴ АВВОТТ	99C	D0	$p\overline{p} \rightarrow \text{dijet mass.} \Lambda_{LL}^+$			
>2.1	95	³⁵ АВВОТТ	98G	D0	$p\overline{p} \rightarrow \text{dijet angl. } \Lambda_{LL}^+$			
		³⁶ BERTRAM	<mark>9</mark> 8	RVUE	$p\overline{p} \rightarrow \text{dijet mass}$			

J/ψ production at the Tevatron, the biggest surprise among the studies of production dynamics


Things don't appear so bad if one cannot separate Ψ 's from B decays and direct ones

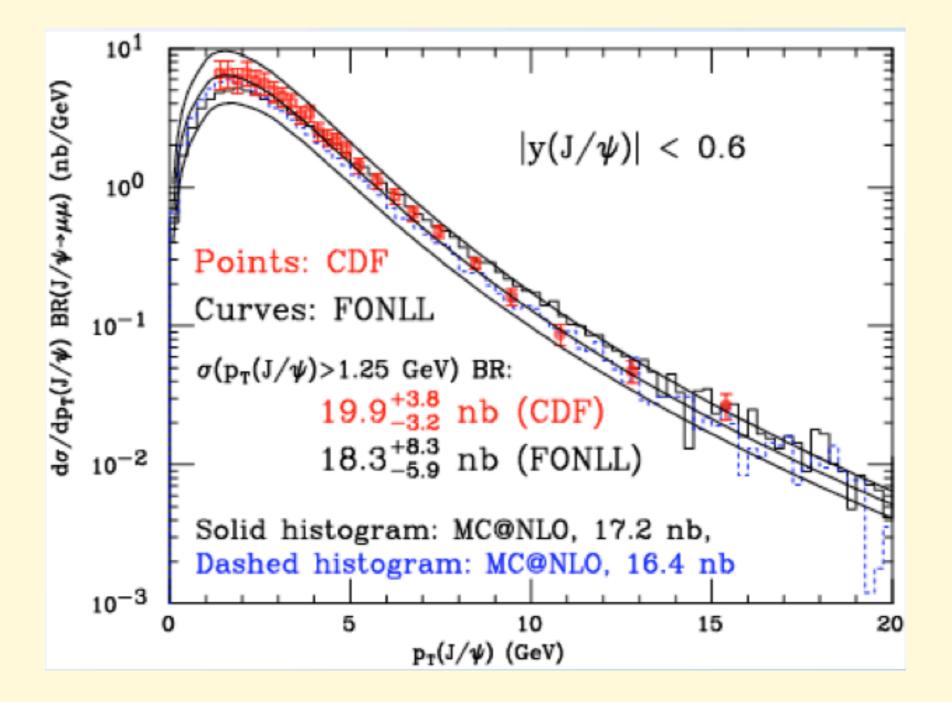
... but the disagreement grows to a factor of 50 if we can separate out the directly produced ψ 's !

... Later solved by realizing the role of neglected color-octet production processes


The b-quark production rate, a tough challenge

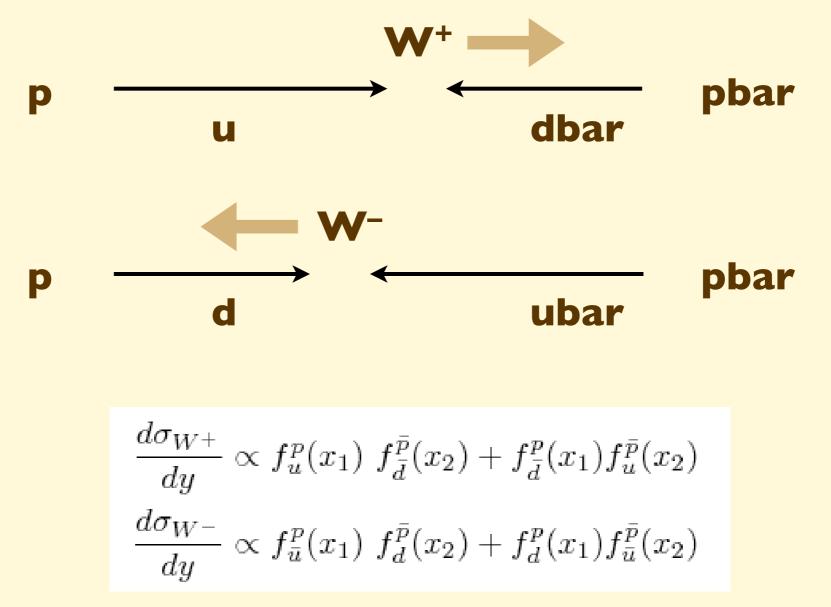
Oct 1994:
CDF, PR D50 (1994) 4252σ(PT>11.5 GeV, |y|<1):
CDF = 3.7±2.2 μb
theory = 1.1±0.5 μb

March 1995: CDF, PRL, 75 (1995) 1451

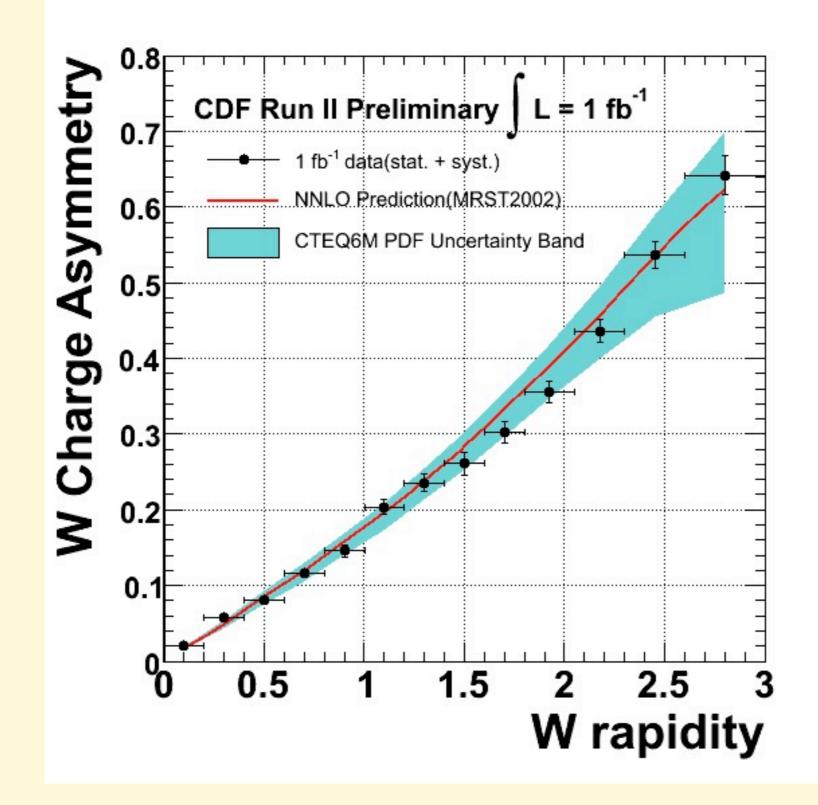


Levin, Ryskin, Shabelski, Phys.Lett.B260: 429-432,1991

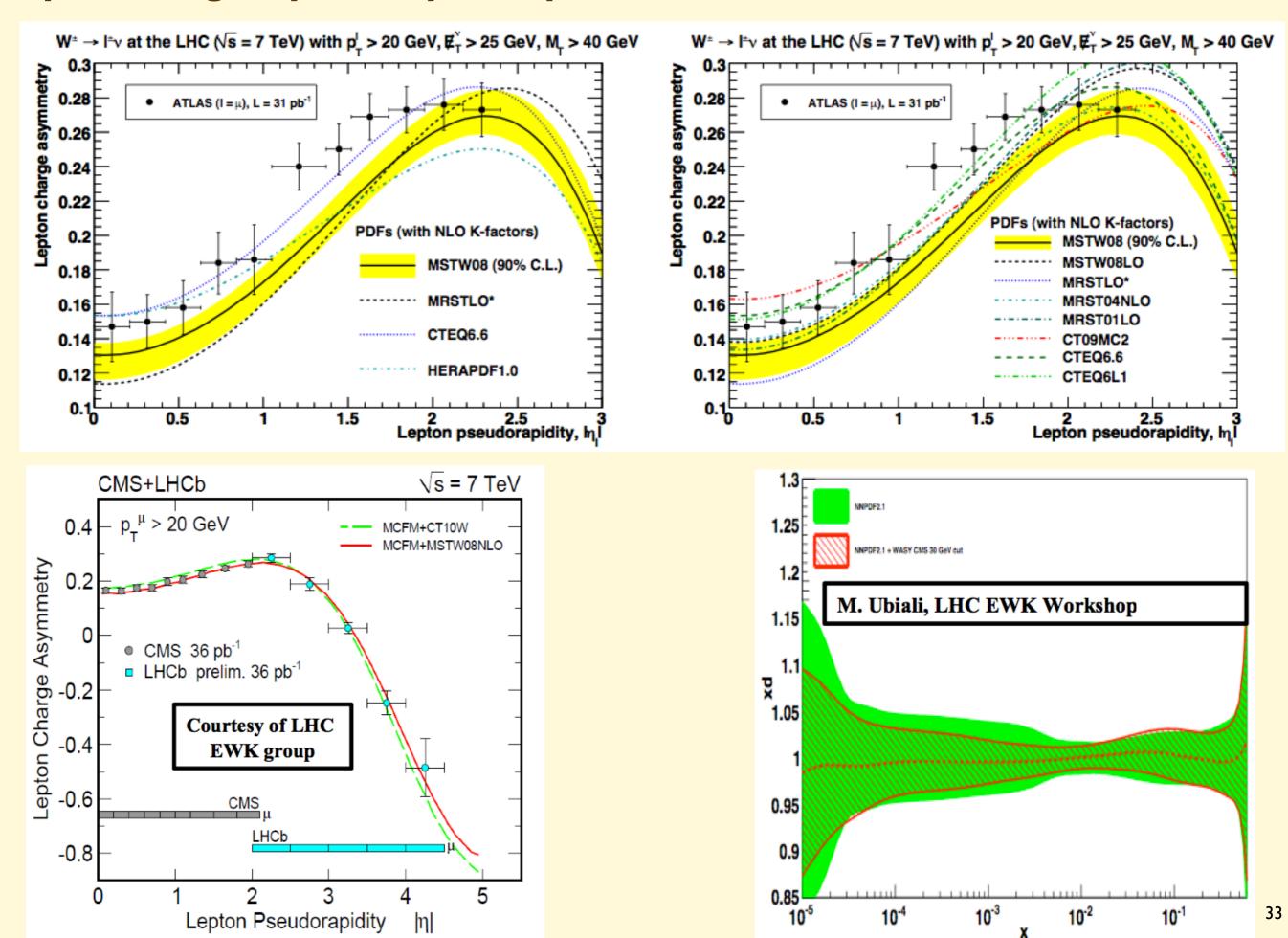
Berger, Meng, Tung, PR D46 (1992) R1895


Berger, Harris, Kaplan, Sullivan, Tait, Wagner, PRL 86 (2001) 4231

Finally, none of the above


Cacciari, Frixione, Mangano, Nason, Ridolfi, hep-ph/0312132 hep-ph/0411020

Exploitation of dynamical understanding of production processes: W rapidity asymmetry and PDF fits


(Assuming dominance of valence contributions)

 $f_d(x) = f_u(x) R(x)$ $A(y) = \frac{\frac{a\sigma_{W^+}}{dy} - \frac{a\sigma_{W^-}}{dy}}{\frac{d\sigma_{W^+}}{du} + \frac{d\sigma_{W^-}}{du}} = \frac{f_u^p(x_1) f_d^p(x_2) - f_d^p(x_1) f_u^p(x_2)}{f_u^p(x_2) + f_d^p(x_1) f_u^p(x_2)} = \frac{R(x_2) - R(x_1)}{R(x_2) + R(x_1)}$

Run II comparison of W charge asymmetry with current PDF parameterizations

Lepton charge asymmetry in W production

A personal top-list of CDF achievements

- I. Top discovery and m_{top}
- 2. B_S oscillations
- 3. mw
- 4. CPV in $B \rightarrow \psi K_S$
- 5. ... and much much more:
 - I. BSM and Higgs limits
 - 2. QCD dynamics

What's missing?

- I. Higgs
- 2. $B_S \rightarrow \mu^+ \mu^-$