

FLASH TDR meeting: Theory challenges

Luca Visinelli **TDLI & Shanghai Jiao Tong University**

INFN-LNF, November 26, 2024

The QCD sector of particle physics demands solving the "strong-CP puzzle"

The distribution of quarks in a neutron defines the neutron's **electric dipole moment**

Experimentally, this is remarkably small $|\theta| \leq 10^{-10}$

Idea: the quantity θ is not a parameter but a field α (the axion)

$$\mathcal{L}_{\text{QCD}} \supset \theta \,\tilde{G}G \longrightarrow \frac{u}{f_a}$$

Gluon field

New energy scale

QCD Axion: Theory motivations

[Peccei, Quinn, PRL **38** (1977) 1440] [Weinberg, PRL **40** (1978) 223] [Wilczek, PRL **40** (1978) 279]

 \tilde{G}

Cold axions as dark matter

Cold axions as dark matter

Interactions are set by the **pseudo-scalar nature** of the axion, with Lagrangian:

$\mathcal{L} \supset g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B} + g_a$

Experimentally, how do they look like?

- Via $\mathbf{E} \cdot \mathbf{B}$ coupling (CP-odd) —
- Via coupling to e^- and n spins \longrightarrow Precessions

Coupling of the axion with the photon

$$a_{f}(\nabla a) \cdot \mathbf{S} + g_{\mathrm{EDM}} a \, \mathbf{S} \cdot \mathbf{E}$$

Additional electric current

Coupling of the axion with the photon

Overdensities produced in the early Universe act as "seeds" for bound axion miniclusters (Hogan, Rees 88)

For an overdensity $\,\delta\equiv 1-ar{
ho}/
ho\,$ the AMC de

We first assessed the minicluster distribution in the Milky Way Kavanagh, Edwards, LV, Weniger 2011.05377

ensity is
$$ho_{
m amc}(\delta) = 140 \, (1+\delta) \delta^3
ho_{
m eq}$$

Kolb, Tkachev astro-ph/9311037

 $\delta f = f\left(\frac{v\sigma_v}{c^2}\right) \approx 0.23 \,\mathrm{mHz}\left(\frac{10}{10}\right)$

Velocity dispersion in the AMC: $\sigma_v^2 = \frac{GM_{\rm amc}}{R_{\rm amc}}$ $\sigma_v \approx 1.4 \,\mathrm{m/s} \,\left(\frac{M_{\mathrm{amc}}}{10^{-10} \,M_{\odot}}\right)^{1/3} \,\left(\frac{\delta}{10}\right)^{2/3}$

This translates into the frequency width:

$$\frac{f}{10 \,\mathrm{MHz}} \left(\frac{M_{\mathrm{amc}}}{10^{-10} \,M_{\odot}} \right)^{1/3} \left(\frac{\delta}{10} \right)^{2/3}$$

and white the second and the second

This has been recently sought in ADMX: 2410.09203

Considering the potential variability in signal widths due to the uncertain velocity dispersions of specific cold flows in the caustic ring model or axion miniclusters, we conduct a high-resolution search across multiple frequency resolving powers. The maximum sensitivity to a given cold flow occurs when the bin width, $\Delta \nu$, matches the signal's full width at half the maximum power. A bin width of $10 \,\mathrm{mHz}$, for a 100-second digitization, is most sensitive to axions with velocity dispersion of 3 m/s, given a mean flow velocity magnitude of $v \approx 300 \,\mathrm{km/s}$ and a frequency $f = 1 \,\mathrm{GHz}$.

Other things to do if we proceed for this!

Power in the cavity: $P(\omega) \propto g_{a\gamma}^2 \,
ho_a \, f(\omega)$

We need to account for the chance of encountering miniclusters and streams: <u>2212.00560</u>

- Some simulations of minicluster dynamics that involve the axion DM in the mass range of FLASH.
- This includes assessing the mass distribution of miniclusters for axions with $\,m_a = 1\,\mu{
 m eV}$
- The mass distribution includes tidal stripping: my work <u>2011.05377</u> + recent work <u>2402.03236</u>
 - Fourier decomposition at the frequency ω

Inverse Gertsenshtein effect (see e.g. Camilo Garcia work)

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad h_0 \sim |h_{\mu\nu}|$

Gatti, **LV**, Zantedeschi <u>2403.18610</u>, PRD

High-frequency gravitational waves

FLASH LowT BabyIAXO ADMX EFR HAYSTAC ALPHA

Work with Michael Zantedeschi (postdoc @TDLI)

High-frequency gravitational waves

Vs.

LVK $f \sim (10-1000)$ Hz: Solar-mass BHs

Cavities resonate at much higher frequencies than those in LIGO/VIRGO/KAGRA

Gatti, **LV**, Zantedeschi 2403.18610

Cavity $f \sim (0.1-10) \,\mathrm{GHz}$: Primordial BHs

Open theory questions, see for more: Gatti, LV, Zantedeschi 2403.18610

- How precisely can we infer the signal geometry using a single cavity?
- Multiple cavities help distinguishing between spin-0, spin-1, or spin-2 (pseudo-)fields and provide noise reduction
- Further work needed to characterize coherent versus stochastic signals, as well as continuous versus transient signals.
- Nevertheless, any potential detection would unequivocally point to new physics of astrophysical origin.

High-frequency gravitational waves

Intriguing opportunity not discussed so far in the CDR

The visible universe is governed by a rich spectrum of forces and particles. What particle physics governs most of the matter in the universe?

Generic to expect that dark matter couples to new long-ranged forces.

Millicharged particles

 $\implies q_{\chi} \sim \epsilon \ Q' \ e'/e \quad (\text{effective DM charge})$

Millicharged particles

Goal

Induce and measure disturbances of the dark matter "fluid,"

Berlin+ <u>1908.06982</u>

□ Tool (python/root) to simulate the deflection and detection phases

□ Tool tested for spherical electric field

□ Tool ready for more realistic setup (discussing with D. Alesini per la configurazione finale)

F. Mescia, G. Grilli di Cortona, F. La Valle (RM1 laureando) & M.Navydenov

Millicharged particles

□ Tool (python/root) to simulate the deflection and detection phases

□ Tool tested for spherical electric field

□ Tool ready for more realistic setup (discussing with D. Alesini per la configurazione finale)

F. Mescia, G. Grilli di Cortona, F. La Valle (RM1 laureando) & M.Navydenov

Millicharged particles

Ideal theory focus for 2025:

- Impact of dark matter substructures on direct detection.
- Motivations for GW searches at the GHz
- Millicharged particles
- Refining the computations for axions and dark photons in cavities

Introductory slides and other ideas can be found in the kick-off meeting: <u>https://agenda.infn.it/event/41365/</u>

Please refer to the CDR publication: <u>2309.00351</u>

Thanks to my collaborators: Claudio Gatti, Enrico Nardi, Federico Mescia, Michael Zantedeschi + the whole FLASH staff

