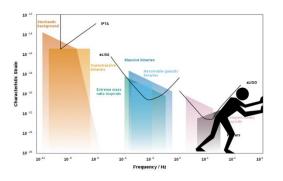

FLASH Finuda magnet for Light Axion Search Haloscope

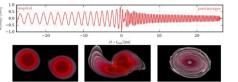


Claudio Gatti LNF – INFN Kick Off Meeting 26/11/2024


FLASH aims to probe the region between 0.5 and 1.5 μeV

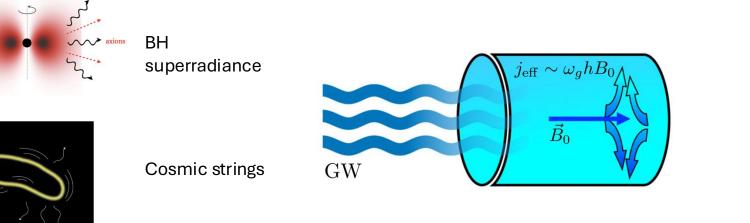
 $1\mu eV = 250 MHz \rightarrow \lambda = 1.2m \rightarrow cavity with O(m) diameter$

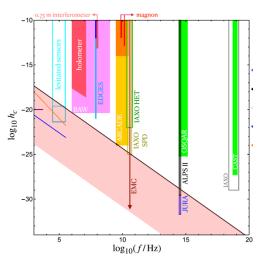
Main Goals


- Search of galactic axions at 100 MHz (0.5-1.5 μeV)
- Probe several light DM models: scalar, pseduscalar and vector DM.
- Extend the gravitational wave search region to higher (MHz-GHz) frequencies

https://www.ctc.cam.ac.uk/activities/UHF-GW.php

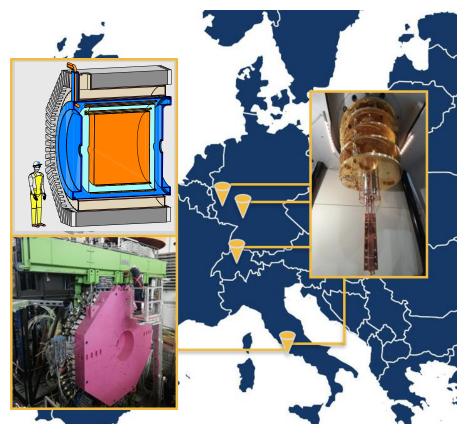
High Frequency Gravitational Waves

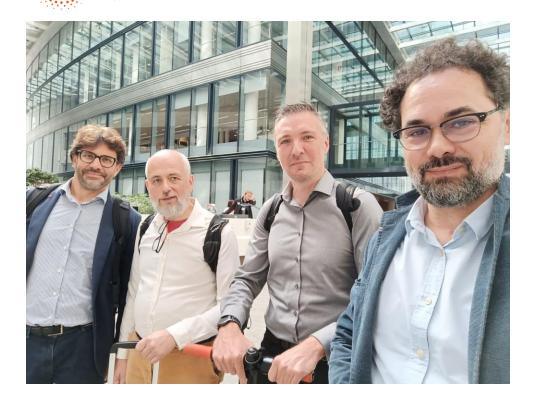




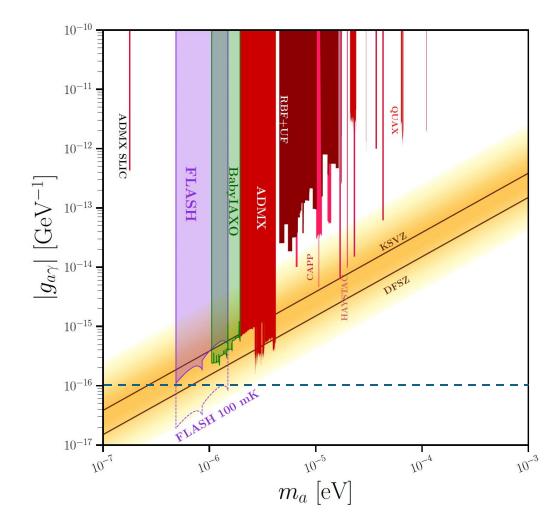
Boson stars mergers

Primordial BH

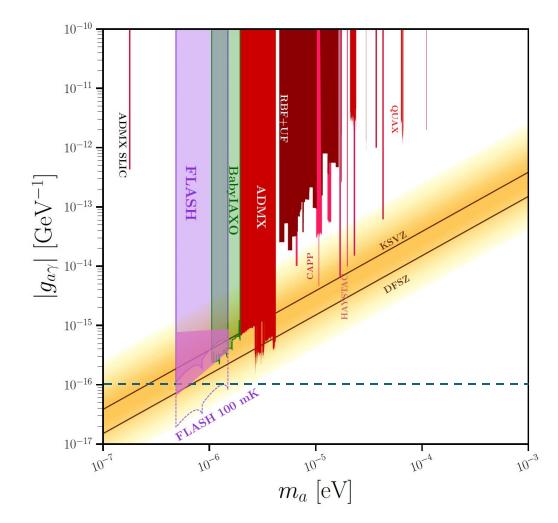

- The landscape of gravitational waves in the ultra-high frequency regime, above the kHz, is beyond the sensitivities of the present terrestrial experiments.
- HFGW could potentially be sourced by a collection of exotic physical phenomena originating both in the early and late Universe.
- Possibility to probe particle physics at energy scales many orders of magnitude beyond the reach of future particle colliders.


GravNet: A Global Network for the Search for High Frequency Gravitational Waves

ERC Synergy funded with 10 Meuro



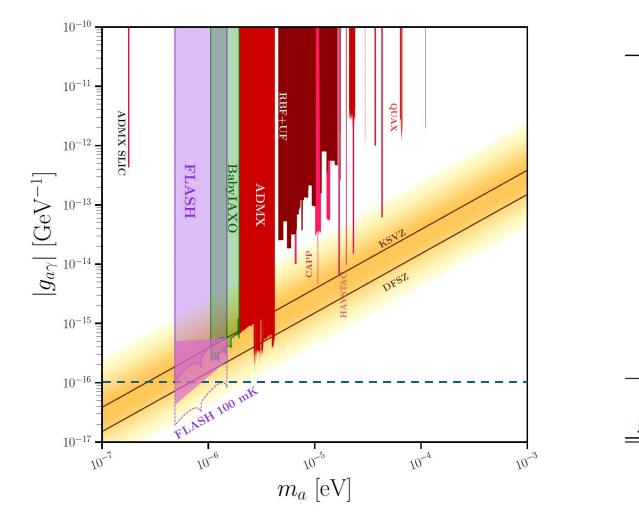
European Research Council Established by the European Commission


FLASH Physics Reach

With Cu cavity at 4.5 K

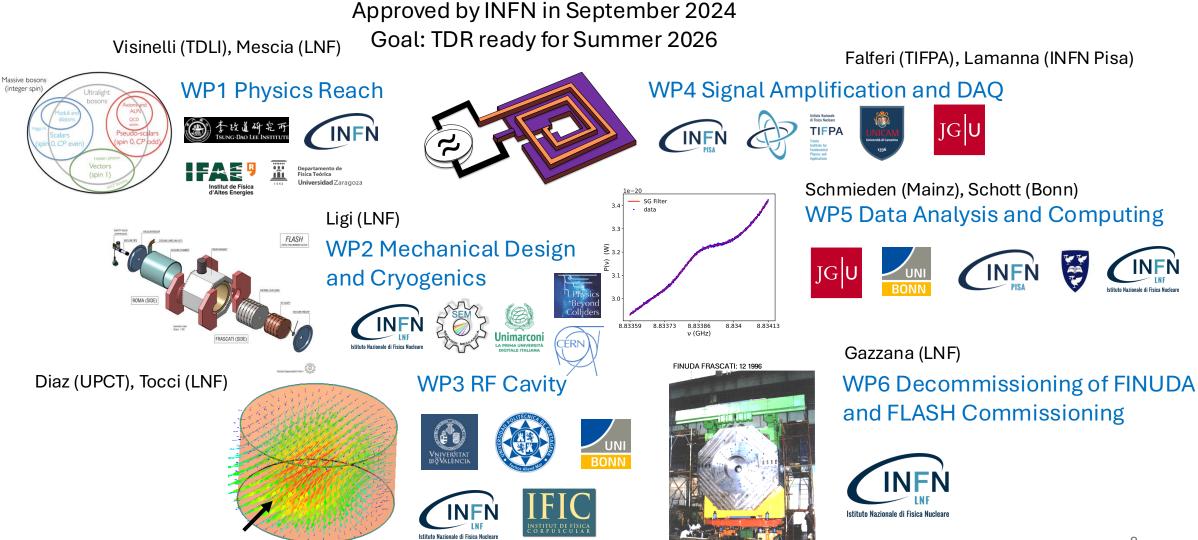
Parameter	Value			
$ u_c [\mathrm{MHz}] $	150			
$m_a [\mu { m eV}]$	0.62			
$g_{a\gamma\gamma}^{ m KSVZ}$ [GeV ⁻¹]	2.45×10^{-16}			
Q_L	$1.4 imes 10^5$			
C_{010}	0.53			
$B_{ m max}$ [T]	1.1			
eta	2			
$ au~[{ m min}]$	5			
$T_{ m sys}~[{ m K}]$	4.9			
$P_{\rm sig}$ [W]	0.9×10^{-22}			
Scan rate $[Hz s^{-1}]$	8			
$m_a [\mu \mathrm{eV}]$	0.49 - 1.49			
$g_{a\gamma\gamma}$ 90% c.l. [GeV ⁻¹]	$(1.25 - 6.06) \times 10^{-16}$			

FLASH Physics Reach

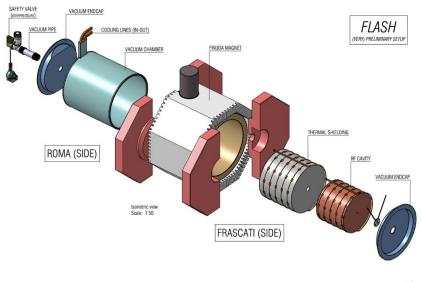

With Cu cavity at 1.9 K

Parameter	Value			
$ u_c [\mathrm{MHz}] $	150			
$m_a [\mu { m eV}]$	0.62			
$g_{a\gamma\gamma}^{ m KSVZ}$ [GeV ⁻¹]	2.45×10^{-16}			
Q_L	$1.4 imes 10^5$			
C_{010}	0.53			
$B_{ m max}~[{ m T}]$	1.1			
eta	2			
$ au~[{ m min}]$	5			
$T_{ m sys}~[{ m K}]$	4.9			
$P_{ m sig}~[{ m W}]$	0.9×10^{-22}			
Scan rate $[Hz s^{-1}]$	8			
$m_a [\mu \mathrm{eV}]$	0.49 - 1.49			
$g_{a\gamma\gamma}$ 90% c.l. [GeV ⁻¹]	$(0.8-3.96) \times 10^{-16}$			

FLASH Physics Reach



With NbTi cavity at 1.9 K



Parameter	Value			
$ u_c [\mathrm{MHz}] $	150			
$m_a [\mu { m eV}]$	0.62			
$g_{a\gamma\gamma}^{ m KSVZ}$ [GeV ⁻¹]	2.45×10^{-16}			
Q_L	$6.7 imes 10^5$			
C_{010}	0.53			
$B_{ m max}$ [T]	1.1			
eta	2			
$ au~[{ m min}]$	5			
$T_{ m sys}~[{ m K}]$	4.9			
P_{sig} [W]	0.9×10^{-22}			
Scan rate $[Hz s^{-1}]$	8			
$m_a [\mu { m eV}]$	0.49 - 1.49			
$g_{a\gamma\gamma}$ 90% c.l. [GeV ⁻¹]	$(0.37-1.8) \times 10^{-16}$			

Design Study and R&D for the TDR

WP2 - Mechanical Design and Cryogenics

Design by the Crygenic Service and the Engineering and Mechanical Service of LNF (SEM)



and by the Department of Mechanical Engineering of Unimarconi with 1 Professor and 1 PhD student,

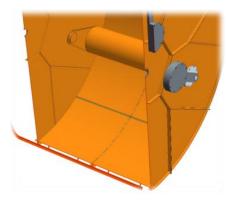
Cesidio.Capoccia@Inf.infn.it

Thysics Beyond

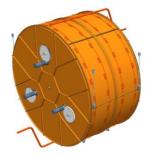
All experiments & proposals linked with Tech WG Updated list after reaching out to all experiments

- ALPS-II (Joern Schaffran) -> axion search light-shining-through-wall with lasers
- BabyIAXO (Matthias Mentink, Igor Garcia Irastorza) -> axion search from the sun
- GrAHal (Pierre Pugnat) -> axion search with RF cavities
- RADES/HTS (Jessica Golm) -> axion search with HTS RF cavities
- Advanced-KWISP (Giovanni Cantatore) -> search for Short Range Interactions
- Axion Heterodyne Detection (TBC) -> axion search with two-mode RF cavities
- AION-100 @ CERN (Oliver Buchmuller, Richard Hobson) -> vertical atom interferometer
- NEW: FLASH (Claudio Gatti) > axion search with RF cavities

27.03.2024


with the technical consultancy from Engineering and Mechanical Support Section at CERN, Cryogenics Group, Technology Dept.

https://indico.cern.ch/event/1369776/timetable/#20240325.detailed

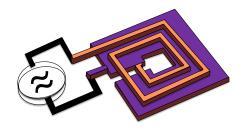

Calatroni/Döbrich | Technology WG activities

WP3 – RF Cavity

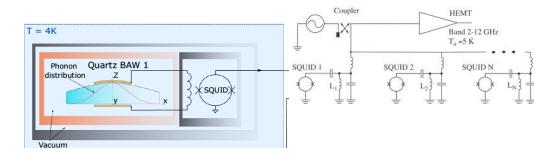
Design and simulation of RF cavity made by UPCT IFIC-UV and LNF

500 MHz Prototype:

- Fabrication at the mechanical workshop in Uni Bonn
- Test in LHe at LNF

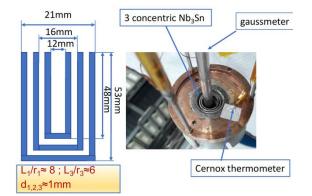


Assess the feasibility of SC coatings for large low-frequency copper cavities within SuperMAD project in CSN5.

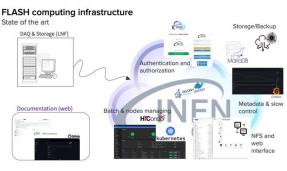


WP4 – Signal Amplification and DAQ WP5 – Data Analysis and Computing

MSA characterization



Signal multiplexing and DAQ test with multimode BAW


Synergy with MiB BAUSCIA project

Characterization in B field of shielded MSA

BICOCCĂ

Computing

Synergy with QUAX

Timeline

Year	2024	2025				2026	
Quarter	IV	1	I	III	IV	1	li li
						TDR Section on Physics	
WP1 - Physics Reach		Modes & Frequencies				Reach	
WP2 - Mechanical	Envelope volume for RF		Define MSA Position in	Prototype Mechanical			TDR section on
Design and Cryogenics	cavity		Cryostat and Probe	Design		Cryostat Design	Mechanical Design
					Fabrication of Cavity	Cryogenic Test of Cavity	TDR Section on RF
WP3 - RF Cavity			Cavity RF Design	Prototype RF Design	Prototype	Protoype	Cavity
WP4 - Amplification and		Gain and Noise	Test of Shielding in		Multiplexing Prototype	Full Chain Test with BAW	TDR Section on
Acquisition		Characterization of MSA	Magnetic Field	DAQ	Circuit	resonator	Amplification & DAQ
WP5 - Data Analysis and					Computing Cloud Model	TDR Section on Analysis	
Computing					validated	& Computing	
WP6 - Decommissioning				Tools for FINUDA		TDR Section on	
& Commissioning				Decommissioning		Decommissioning &	
WP7 - Management	Periodic Meeting	Periodic Meeting	Periodic Meeting	Periodic Meeting	Periodic Meeting	TDR writing	Technical Design Report

TDR in summer 2026

Organization

- 1. Steering Committee composed by the Group/Institution leaders and key figures/persons
 - a) Define collaboration organization: rules and roles
 - b) Arrive at the TDR with a formal collaboration proposal
 - c) Connection to GravNet and funding agencies (INFN, ...)
- 2. Technical Board: provisionally chosen by me, then by the SC, composed of technical experts (infrastructure, detector, computing, ...) that review and follow the evolution of the TDR preparation. Interacts with LNF services.
- 3. Project WPs and Taks leaders