The GSI cw-LINAC-project

Winfried Barth GSI, HIM

The GSI cw-LINAC-project

W. Barth, GSI - Darmstadt

- 1. Existing GSI-UNILAC and future linac injectors@GSI
- 2. High duty factor upgrade
- 3. cw-linear accelerator concept
- 4. Multicell CH-cavity
- 5. CH-prototype and full performance test
- 6. Summary and Outlook

FAIR

Preperation for civil construction, 2012

New future facility: provides ion and anti-matter beams of highest intensities and up to high energies

GSI <u>UNI</u>versal <u>Linear</u> <u>AC</u>celerator

Active defects

Drift tubes

massive sparkovers

beam induced surface defects

Copper surface quality

... inner tank blanket at different positions

Future Requirements

Present Status Of UNILAC

- Most of the Alvarez-tank and all Single Gap Resonators in operation since 1975
- Issues on machine reliability and maintenance \Rightarrow substitution of the DTL cavities
- Operation of quadrupoles only in dc-mode
- Limited flexibility for multibeam operation
- MASSIVE INJECTOR-UPGRADE REQUIRED I Less effective for short pulse operation because of duty factor operation
- max. duty factor of 25%

Main Requirements

- High intensity/bri minac as a synchrotron injector for FAIR
- Hiab mess heavy ion linac as a synchrotron injector for FAIR
- Hid actor, 7.5 MeV/u, variable beam energy, heavy ion linac for the SHE-program

... plus

- heavy ions for material research, plasmaphysics, biophysics programmes, IRIS, ... (old exp. hall)
- High intensity rare isotope beams (from EZR) for FAIR
- entire multi beam operation

7

FAIR requirements:

- extremely high pulse intensities
- low repetition rate (max. 3 Hz)
- low duty factor (0,1 %) (pulse length for SIS18 only 100 µs)

SHE requirements:

- relatively high pulse intensities
- high repetition rate (50 Hz)
- high duty factor (-> 100 %) (pulse length up to 20 ms)

GSI-Future Option

- Proton linac-injector for FAIR (FAIR-pbar-physics)
 - 70 MeV, 35 (70) mA, 325 MHz, 0.1% duty factor

High Energy injector linac (replacement of Alvarez DTL)

- Prestripper: 3 MeV/u, A/q = 60 (18 emA), 108 MHz, 1% duty factor
- Poststripper: 11.4 MeV/u (max. 22 MeV/u), A/q = 6.3 (20 mA, 108/325 MHz, 1% duty Factor

sc-cw-linac (for Super Heavy Element program)

• 3.5 – 7.5 MeV/u, 1 mA, 217 MHz, 100 % duty cycle

Overview/High duty factor upgrade

SHE-UNILAC-Upgrade

28 GHz- ECR ion source/Status Quo

Major steps:

- Completion of sc magnet system and cryostat
- Delivery to GSI/IQ
- Completion of ion source
- Commissioning on test bench
- Installation and commissioning at HLI

W. Barth, The GSI cw-LINAC-project, ENSAR - ECOS 2012 workshop, "Advances and Challenges in Nuclear Physics with High Intensity Stable Beams", June 18-21, 2012, Villa Vigoni, (Como) Italy

G S I

GSI sc-cw-LINAC-project

Motivation:

Element 120, <0.1 pb (1pb <-> 1 event/week)

	GSI- UNILAC	cw-LINAC			
Beam Intensity (particles/sec) (S. Hofmann et al, EXON 2004)	3 *10 ¹²	6 *10 ¹³			
Beam on target	10 weeks	4 days			

UNILAC is not dedicated to SHE, nearly not obtainable to keep SHE @ GSI competetive: Increase of Beam Intensity and Detection Efficiency

General parameters

Mass/Charge		1/6
Frequency	MHz	217
max. beam current	mA	1
Injection Energy	MeV/u	1.4
Output energy	MeV/u	3.5 - 7.5
Output energy spread	keV/u	+- 3
Length of acceleration	m	12.7
Sc CH-cavities		9
Sc solenoids		7

Multicell sc-CH-cavity

- Small number of rf cavities (gap numbers from 10 to 20)
- acc. gradient of 5 MV/m \rightarrow compact linac design
- Cold solenoids in the inter-tank sections
- Several cavities, solenoids per cryostat
- Cavity lengths range up to around 1 m
- Cylindrical cryostats is typically <6 m long
- At a given frequency: CH-type cavities has very small transverse dimensions

Conceptual layout of the cw-LINAC

CH-cavities

So far...

- sc energy variable linacs: 2 gap or 3 gap-cavities (spiral-, $\lambda/4$ $\lambda/2$ -type, spoke-, ...)
- High flexibility in beam energies and q/m-ratios → altering rf-phase relations between cavities and matching the voltage amplitudes
- But: Relatively long lengths between accelerating sections and high total number of cavities including couplers, tuners, controls, and RF power amplifiers
- R.T. focusing elements → high number of separated cryostats accompanied by many cold-warm transitions

Multicell CH-cavities:

- 10 20 cell cavities + cold lenses (cryostat with several cavities and lenses)
- cavity length \leq 1 m, cryostat length \approx 5 m in length
- H-type cavities: Small transverse dimensions (at a certain frequency)
- A 19-cell 360 MHz prototype successfully developed and operated at Univ. of Frankfurt
- EQUidistant mUlti-gap Structure (EQUUS) + external focusing lenses → Negative initial and final rf-phases; acceleration around the crest of the wave along the middle part. → maximum in accelerating voltage between two neighbo[^]ring focusing lenses
- EQUUS \rightarrow eased manufacturing and rf-tuning (importance for sc structures)
- Comfortable beam dynamics layout

CH-cavities

Vertical test setup of the sc-CH-prototype cavity

U. Ratzinger, H. Podlech (Univ. of Frankfurt)

Measured Q-value as function of the accelerating gradient

beam optics design

W. Barth, The GSI cw-LINAC-project, ENSAR - ECOS 2012 workshop, "Advances and Challenges in Nuclear Physics with High Intensity Stable Beams",June 18-21, 2012, Villa Vigoni, (Como) Italy GSI

EQUUS (EQUidistant mUltigap Structure)

Advanced cw-linac beam dynamics layout

Beam Energies above the LINACdesign (7.5 MeV/u):

- Request by user communities
- Fixed beta profile applying EQUUS beam dynamics approach → ≤ 10 MeV/u (A/q<<6)

Influences of statistical errors:

- 300 LORASR-simulation runs
- Statistical distribution of horizontal and vertical shift of beam line components (±300 µm)
- Statistical tilt error (±1.7 mrad)

Parameters of the sc multi-gap accelerating cavities

		•								
Parameter	unit	C1	C2	C3	C4	C5	C6	C7	C 8	C 9
Gap number		15	17	19	10	10	10	10	10	10
Total length	mm	613	811	1054	636	642	726	726	813	862
Cell length,	mm	40.8	47.7	55.5	63.6	64.2	72.6	72.6	81.3	86.2
Synch. velocity		0.059	0.069	0.080	0.092	0.093	0.105	0.105	0.118	0.125
Aperture diameter	mm	20	22	24	26	28	30	32	34	36
Eff. gap voltage	kV	225	274	317	356	362	408	411	459	538
Voltage gain	MV	3.13	4.14	5.42	3.27	3.30	3.73	3.73	4.18	4.43
Phase Factor*		0.93	0.89	0.90	0.92	0.91	0.92	0.91	0.91	0.82
Accelerating rate	MV/m	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1

* The parameter named "phase factor" characterizes the accelerating efficiency with respect to the phase sliding along the section.

sc-216 MHz-CH-Protype

Parameter	Unit	CH-1
Beta		0.059
Frequency	MHz	217
Gap number		15
Total length	mm	690
Cavity diameter	mm	420
Cell length	mm	40.82
Aperture	mm	20
Effective gap voltage	kV	225
Voltage gain	MV	3.13
Accelerating gradient	MV/ m	5.1
E _p / E _a		6.5
B _p / E _a	mT/ (MV/m)	5.9
R/ Q	Ω	3540
Static tuner		9
Dynamic bellow tuner		3

Solenoids

Bmax	9,323T
B*L	2,635 Tm
L	0,28 m
Aperture	30 mm

Demonstrator Project (HIM, GSI)

High Charge State Injector

Summary

- FAIR high current requirements should be reached by the upgrade of the 35 years old GSI-UNILAC (not compatible with SHE-requirements)
- A high duty factor upgrade of the GSI High Charge State Injector is still ongoing:
 - cw-RFQ (commisioning)
 - 28 GHz ECR (R&D)
 - Low Energy Beam Transport (layout)
- A conceptual layout of a separate cw-LINAC for the SHE experimental program is well prepared
 - Choice of acc. structure (multicell CH)
 - EQUUS-beam dynamics design
 - Cold Solenoids (< 10T)</p>
 - Error studies
- The cw-linac R&D (CH-Demonstrator project) is on the way
 - CH-cavity, sc-solenoids, cryostat, rf-amplifier still ordered
 - rf-testing@GUF scheduled (2013)
 - test environment in preparation
 - full performance beam test scheduled (2013/14)

Schedule

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Heavy Ion-LINAC-Injector for FAIR-commissioning/-operation							UNILAC <mark>cw-LINAC</mark>				HE-LINAC				
p-LINAC as FAIR-injector								FAIR-proton-LINAC							
UNILAC-Upgrade "Campus Development"															
FAIR-UNILAC-Upgrade															
SHE-UNILAC-Upgrade															
FAIR-Protonen-LINAC	Techn. Design						Mounting& Commissioning								
cw-CH-LINAC-Demonstrator			beam test												
sc-cw-LINAC	Designphase						Mour Commis	nting& ssioning							
HE-LINAC (Step 1)		Designphase		-					Mour Commis	iting& ssioning					
HE-LINAC (Step 2)							Desigr	nphase						Moun Commis	iting& ssioning

Advanced injector linac layout

W. Barth, The GSI cw-LINAC-project, ENSAR - ECOS 2012 workshop, "Advances and Challenges in Nuclear Physics with High Intensity Stable Beams", June 18-21, 2012, Villa Vigoni, (Como) Italy

GSI

Addendum

General Approach

A Modern High Power Injector...

should be ...

- compact
- high efficient (rf-power consumption)
- cost saving in production and operation

should provide beam of...

- High Intensity (minimum particle loss)
- High Brilliance

LINAC parameters (e.g. final beam energy, beam current and charge) should be fixed with respect to the synchrotron design limits

- Tune Shift
- Life Time
- Space charge limit

The GSI <u>UNI</u>versal <u>Linear</u> <u>AC</u>celerator

W. Barth, The GSI cw-LINAC-project, ENSAR - ECOS 2012 workshop, "Advances and Challenges in Nuclear Physics with High Intensity Stable Beams", June 18-21, 2012, Villa Vigoni, (Como) Italy

High Charge State Injector (HLI)

Superconducting ECR ion source

New LEBT for MS-ECRIS

RFQ upgrade

- Status quo: Same RFQ in operation since 1991, first RFQ-IH-LINAC, RFQ with longest operation time in the world
- Design parameters: W_{out}/300 keV/u, operating frequency: 108 MHz, duty cycle 25-50%, rep. rate 50-100 Hz, electrode voltage: 80 kV, tank length: 3 m
- Problems: Reduced transmission and poor reliability, limited duty cycle (25%)
- <u>New RFQ</u>: 100% duty cycle, increased acceptance, improved beam transmission, revised construction for stable operation; compact design (2 m), reduced electrode voltage (55 kV), keeping the max. average rf power (remaining rf power amplifier)

RFQ-Commissioning (October - April 2010)

Emittance Measurement (RFQ_{out})

Phase Probe Signals (TOF)

