

Grenoble

Status and perspectives of high power ion sources Thierry Lamy

High power ion sources

High power = high intensity and high charge state at a 'reasonable' extraction voltage

Ion source list from Martin Stockli (ORNL-SNS, USA)

- •Bayard-Alpert type ion source •Electron Bombardment ion source
- ·Hollow Cathode ion source
- ·Reflex Discharge Multicusp source
- ·Cold- & Hot-Cathode PIG
- ·Electron Cyclotron Resonance ion source (ECR)
- ·Electron Beam Ion Source (EBIS)
- · Surface Contact ion source
- ·Cryogenic Anode ion source
- ·Metal Vapor Vacuum Arc ion source (MEVVA)
- · Sputtering-type negative ion source
- ·Plasma Surface Conversion negative ion source
- ·Electron Heated Vaporization ion source
- ·Hollow Cathode von Ardenne ion source
- ·Forrester Porus Plate ion source
- · Multipole Confinement ion source
- ·EHD-driven Liquid ion source
- · Surface Ionization ion source
- ·Charge Exchange ion source
- ·Inverse Magnetron ion source

· Microwave ion source ·XUV-driven ion source · Arc Plasma ion source · Capillary Arc ion source · Von Ardenne ion source · Capillaritron ion source · Canal Ray ion source ·Pulsed Spark ion source ·Field Emission ion source · Atomic Beam ion source ·Field Ionization ion source · Arc Discharge ion source · Multifilament ion source ·RF plasma ion source ·Freeman ion source ·Liquid Metal ion source ·Beam Plasma ion source

- Beam Plasma ion source
- ·Magnetron ion source

- ·Nier ion source
- ·Bernas ion source
- ·Nielsen ion source
- · Wilson ion source
- ·Recoil ion source
- ·Zinn ion source
- · Duoplasmatron
- ·Duopigatron
- ·Laser ion source
- ·Penning ion source
- ·Monocusp ion source
- ·Bucket ion source
- ·Metal ion source
- ·Multicusp ion source
- ·Kaufman ion source
- ·Flashover ion source
- Calutron ion source • CHORDIS

Main sessions of the last International Conference on Ion Sources September 2011, Giardini Naxos - Italy

- Negative Ion Sources
- Ion Sources for Fusion
- High intensity proton and deuteron ion sources
- Electron Beam Ion Sources
- Laser Ion Sources
- I Electron Cyclotron Resonance Ion Sources
- 1+ ion sources for radioactive ions
- Charge breeders
- Ion sources for industrial applications

Pulsed Pulsed cw or pulsed

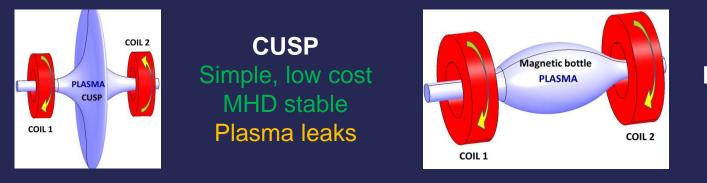
cw or pulsed

- Negative Ion Sources
- Ion Sources for Fusion
- High intensity proton and deuteron ion sources
- Electron Beam Ion Sources
- Laser Ion Sources
- Electron Cyclotron Resonance Ion Sources
- 1+ ion sources for radioactive ions
- Charge breeders

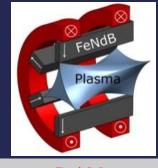
Ion sources for industrial applications

Pulsed Pulsed cw or pulsed

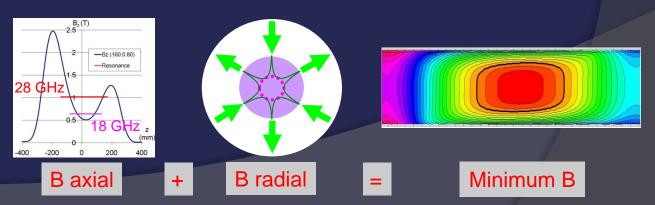
cw or pulsec



How to build high power 'Minimum B' ECRIS


• Science demands :

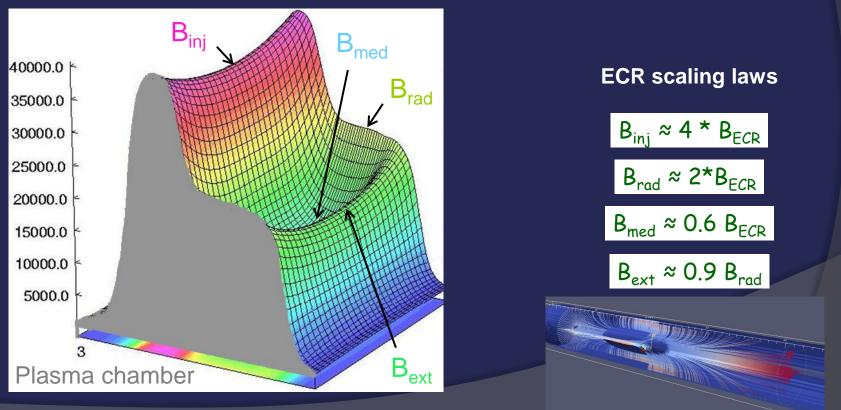
- Higher and higher intensities and charge states (1 mA Ar¹²⁺, 500 μ A U³⁵⁺...)
- Find a compromise (characteristics and costs) between
 - > ECR frequency and power, plasma volume, magnetic field configuration and technology
 - Examples of magnetic field configurations



Magnetic bottle MHD unstable

Minimum B magnetic bottle with radial field MHD stabilization, high confinement

 $\omega_{ce} = q_e B / M_e = \omega_{HF}$



Thierry Lamy Thier 6 Cathy EURSO, COOS ab Weeting, 18+24, 20125, 2012/ig6 RiCC Barisa France

Towards high power ECR ion sources Present status

- Minimum B magnetic structures
 - lon extracted intensity I_i is
 - Proportional to plasma density (n_e) and plasma volume (V_p), n_e \propto ($\omega_{ce} = \omega_p$)² or B²
 - \checkmark Inversely proportional to ion life time (τ_i)
- Semi-empirical 'minimum B' scaling laws to favor high <q> and I;

Towards high power ECR ion sources Present status

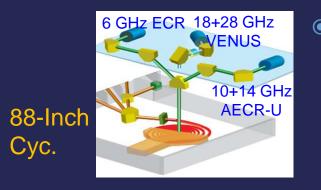
Presently 'almost' no novel concept

$I_{\rm i} \propto (\omega_{\rm ce})^2 \mbox{ so } B^2...$

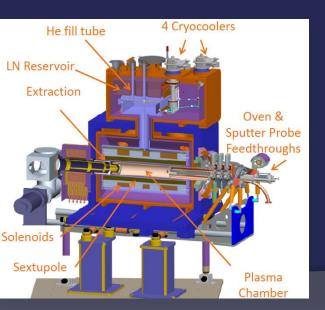
- ECR frequency increase in order to increase the plasma density
- > 10, 14, 18, 24, 28 GHz (the highest in a minimum B magnetic structure)...
- > 24, 28 GHz superconducting prototypes design and constructions
 - First 28 GHz ECR plasmas: PHOENIX LPSC-Grenoble and SERCE LNS-Catania

No one is decided to let us play with such expensive and sophisticated objects

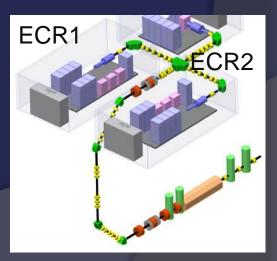
- > The game is to develop a cost effective and confident magnetic structure
- 'Min B' Prototypes design and simulations at 50-56 GHz, B_{inj} > 7 T, B_{rad} > 3.5 T


Presently there is no ambitious experimental discovery research program
 A few projects status...

Present status of high power ECR ion sources USA VENUS (I)

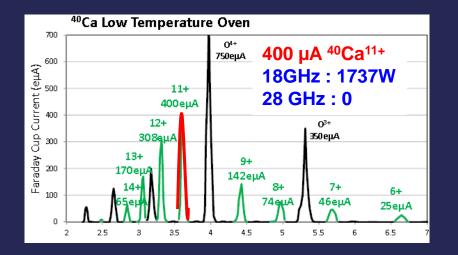

LBNL Berkeley, USA : J. Y. Benitez et al., Rev. Sci. Instrum. 83, 02A311 (2012)

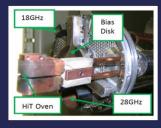
 $\begin{array}{rcl} B_{inj} \ Max = & 4 \ T & B_{ext} \ Max = & 3 \ T & B_{rad} \ Max = & 2.2 \ T \\ Plasma \ chamber & \Phi_{int} = & 140 \ mm, \ L = & 480 \ mm \\ P_{max} \ (18GHz) = & 2kW \ - & P_{max} \ (28GHz) = & 10kW \ (6.5 \ injected) \ (8.5 \ kW \ both) \end{array}$

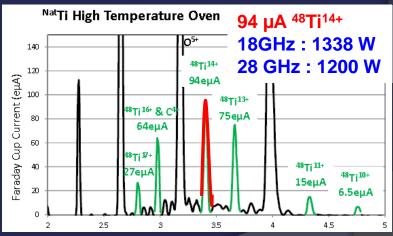

 Historically, first 3rd generation fully superconducting ECRIS

- > Excellent beam results (2.86 emA O^{6+} , 860 μ A Ar¹²⁺)
- 20 kV high voltage isolation
- > About 15 % of the cyclotron beam times since 2006

Considered as a prototype for FRIB 2 VENUS-like 28 GHz ECRIS will be installed

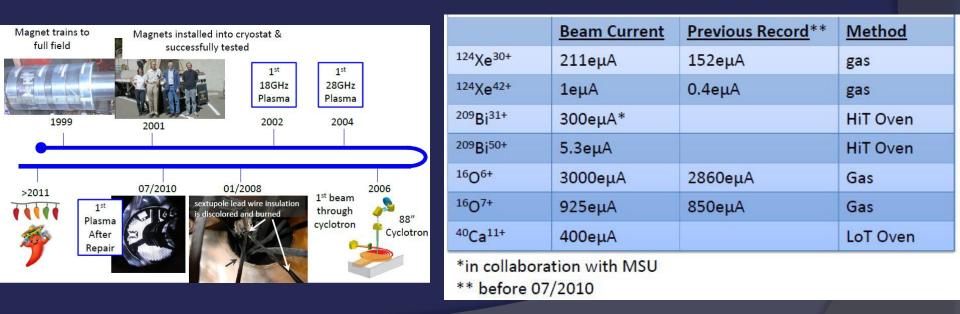

Present status of high power ECR ion sources USA VENUS (II)




Latest developments

- Cocktail beams and high intensity metallic ion beams
 - Mixture of similar Q/A beams in the cyclotron (radiation and space effects testing)
 - Low (650°C) and high (2000°C) temperature ovens and sputter probe

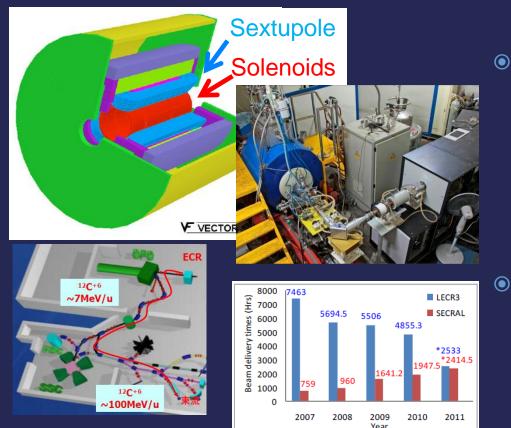
Experimental HF injection improvement
 Objective : to improve the 28 GHz coupling



Present status of high power ECR ion sources USA VENUS (III)

• VENUS operation (beams for the cyclotron : less than 19 months in 6 years)

- Magnets reached full field 1999
- First 18 GHz plasma 2002
- First 28 GHz plasma 2004
- Sept. 2006 : Production for cyclotron for 16 months
- ✓ Jan. 2008 : sextupole leads destroyed (reparation 2.5 years)
- 2010 about 3% of the beams delivered to the cyclotron, 2011 about 10 %



Present status of high power ECR ion sources China SECRAL (I)

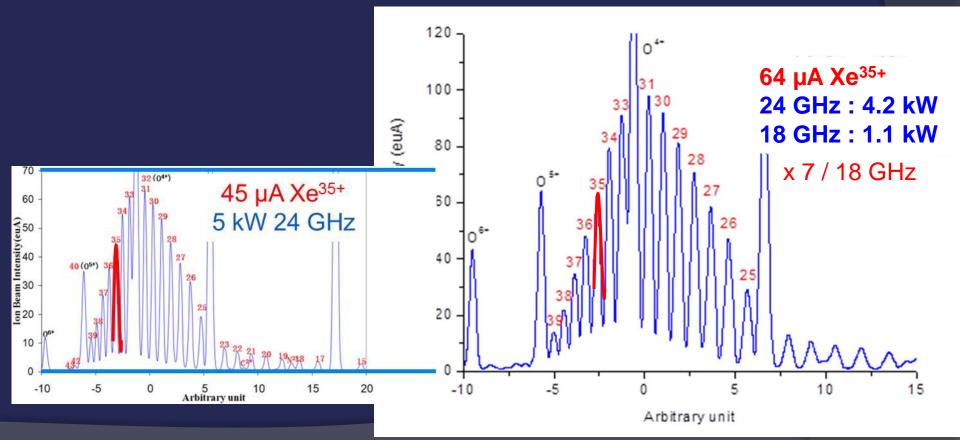
IMP Lanzhou, China: Zhao et al. Rev. Sci. Instrum. 83, 02A320 (2012)

 $\begin{array}{rcl} B_{inj} \ Max = & 3.7 \ T \ B_{ext} \ Max = & 2.2 \ T \ B_{rad} \ Max = & 2 \ T \\ Plasma \ chamber & \Phi_{int} = & 116 \ mm, \ L = & 890 \ mm \\ P_{max} \ (18GHz) = & 2kW \ - & P_{max} \ (24GHz) = & 7kW \end{array}$

In operation since 2007

- Original superconducting structure (sextupole outside)
- I(beams) comparable to VENUS but lower ω_{ce}
- 30 kV high voltage isolation
- ECR frequency increase and multi frequencies
 - > 18, 24, 18+24 (GHz)
 - Stainless steal or aluminum plasma chamber

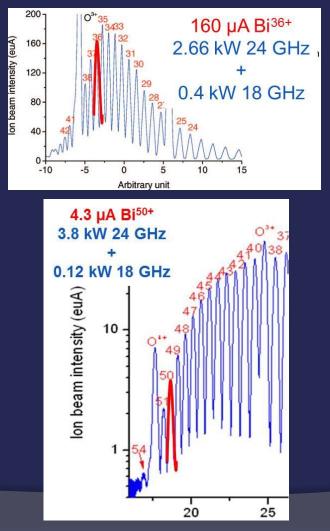
7720 hours cumulated



Present status of high power ECR ion sources China SECRAL (II)

- Best results Xenon Binj = 3.4 T, Bmed = 0.65 T, Bext = 1.8 T, and Brad = 1.6 T
- (24+18) GHz + AI more stable than 24 GHz +St.S

9 μΑ Χe³⁵⁺ 14.5 μΑ Χe³⁵⁺ 3.2 kW 18 GHz +St.S 1.6 kW 18 GHz + 0.2 kW 14.6 GHz + AI

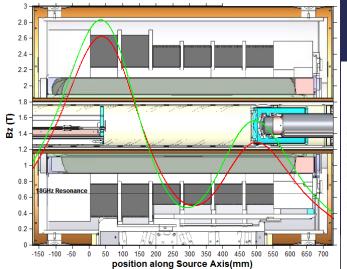


Present status of high power ECR ion sources China SECRAL (III)

- Latest developments
 - high intensity metallic ion beams
 - Low (700°C), conventional (1600 °C) and high (2200°C) temperature ovens

	~						
Xe	SECRAL	SECRAL	SECRAL	VENUS			
IONS	18GHz	24GHz-SS	24+18GHz-Al	28+18GHz			
	<3.2kW	<5kW	<6kW	>6kW			
	(eµA)	(eµA)	<u>(eµA)</u>	(eµA)			
	2007	2009	2011	2010			
26+	410						
27+	306	455		411			
28+							
30+	101	152	236	211			
31+	68	85	190				
33+							
34+	21						
35+	16	45	64	38			
36+							
37+							
38+	6.6	17	22.6	12			
42+	1.5	3		1			

World records (may be not for normal operation)


Present status of high power ECR ion sources USA SuSI (I)

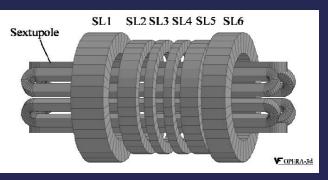


NSCL – MSU, USA : L. T. Sun. et al. Proceedings of ECRIS2010, Grenoble, France http://accelconf.web.cern.ch/AccelConf/ECRIS2010/papers/mocoak02.pdf

 $\begin{array}{rcl} B_{inj} \ Max = & 3.6 \ T \ B_{ext} \ Max = & 2.2 \ T \ B_{rad} \ Max = & 1.8 \ T \\ Plasma \ chamber & \Phi_{int} = & 101 \ mm, \ L = & up \ to \ 500 \ mm \\ P_{max} \ (18GHz) = & 4 \ kW \ - & P_{max} \ (24GHz) = & 7 \ kW \end{array}$

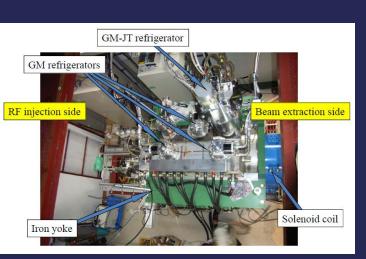
- <image><image>
- Versatile magnetic structure
 - ➢ 6 solenoids
 - Allow to vary length of the structure
 - ✓ 30 kV high voltage isolation
 - I8 GHz HF power increase 2 to 4 kW
 - Performance increase like in SECRAL
 - 24 GHz HF injection soon

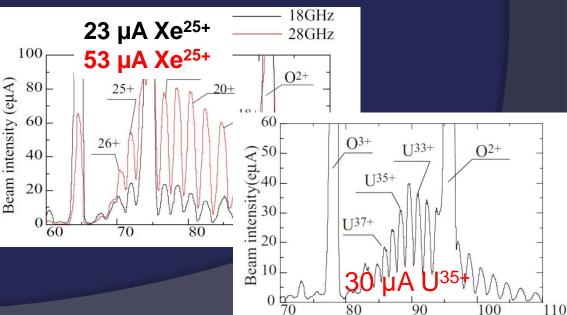
Possibly the second source for FRIB



Present status of high power ECR ion sources Japan SC-ECR (I)

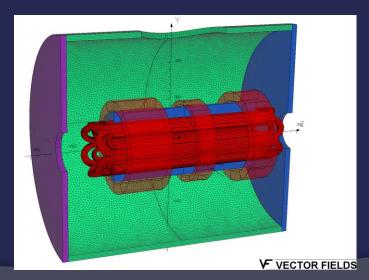
Riken, Nishina center, Japan : Y. Higurashi et al, Rev. Sci. Instrum. 83, 02A308 (2012)

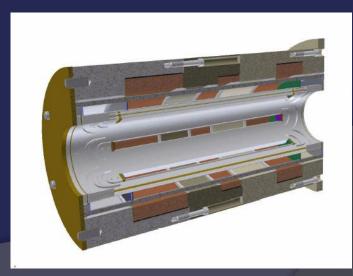

 $\begin{array}{rcl} B_{inj} \ Max = & 3.8 \ T \ B_{ext} \ Max = & 2.3 \ T \ B_{rad} \ Max = & 2.1 \ T \\ Plasma \ chamber & \Phi_{int} = & 150 \ mm \end{array}$



- 6 solenoids
 - Flat field possible
 - 40 kV high voltage isolation

Present status of high power ECR ion sources Europe MS-ECRIS (I)

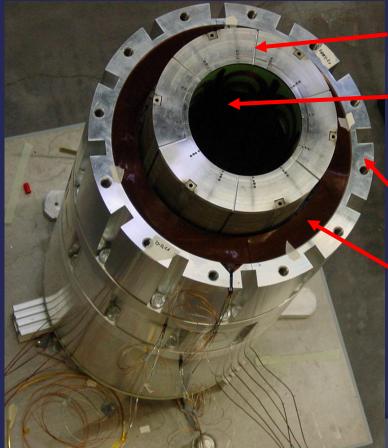



Courtesy of G. Ciavola (INFN-LNS) and K. Tinschert (GSI) K. Tinschert, et al., Rev. Sci. Instrum. 83, 02A319 (2012)

- Intense beams (≤ emA) O⁷⁺, Ca¹⁰⁺, Ni¹¹⁺, Xe²⁰⁺, Pb²⁷⁺...
- Very high charge state of heavy ion beams ($\geq e\mu A$) Kr³²⁺, Xe⁴⁵⁺...

Model for the magnet coil design

Schematic view of the cold mass



Present status of high power ECR ion sources Europe MS-ECRIS (II)

Courtesy of G. Ciavola (INFN-LNS) and K. Tinschert (GSI)

Assembly of cold mass with sextupole and solenoids

Stack of ferromagnetic collar sheets clamping the sextupole coils (inside)

Al-housing of the solenoids with solenoid coils (inside)

Present status of high power ECR ion sources Europe MS-ECRIS (II)

Courtesy of G. Ciavola (INFN-LNS) and K. Tinschert (GSI)

- Results of the first series of cold tests for commissioning
 - All 3 solenoids reached nominal field without quench
 - Sextupole alone also reached nominal field

 - A level of 40-50 % of its nominal field could be achieved

Dedicated new design study

comprehensive structural analysis, magnetic field and force patterns calculations
 Analyze the interaction of the iron collar with the solenoidal fields

Conclusion of the design study

- Two classes of problems have been identified:
- A complex pattern of magnetic forces exerted on the iron collars
- Forces related to the radial magnetic fields generated at the ends of the solenoid coils independent of the magnetic or non-magnetic nature of the collars

• Work in progress

Improve clamping of the iron collar by mechanical machining and additional supporting of the collar package

A new cold test is upcoming and If will be successful, a new planning will be made

Comparison of different fully superconducting ECR Ion Sources

	SUSI (NSCL-MSU)	SC-ECRIS (RIKEN)	SECRAL (IMP Lanzhou)	VENUS (LBNL)	MS-ECRIS (GSI)
Frequency	18-24 GHz	14-28 GHz	18-24 GHz	18-28 GHz	14-28 GHz
Maximum RF power	< 10 kW	<10 kW	10 kW	10 kW	10 kW
B _{radial}	1.8 T	2.1 T	2.0 T (2.2 T)	2.0 T (2.4 T)	2.7 T
B1 (injection)	3.6 T	3.8 T	4.0 T	4.0 T	4.5 T
B2(extraction)	2.2 T	2.2 T	2.0 T	3.0 T	3.2 T
<pre></pre>	102 mm	150 mm	126 mm	140 to 152 mm	180 mm
L chamber	> 500 mm	\geq 500 mm	804 mm	1030 mm	1162 mm
LHe consumption	> 0	0	1.5 l/h	0 (+LN ₂ precool)	0

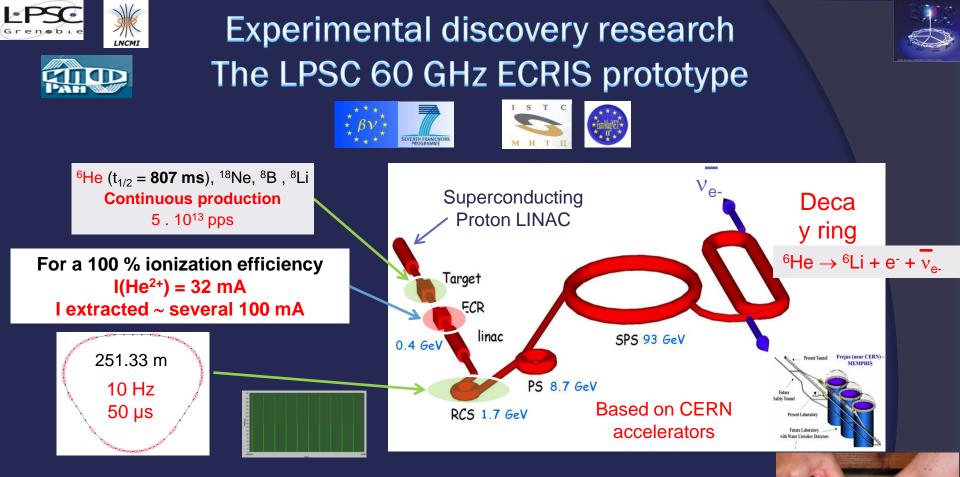
Courtesy of G. Ciavola (INFN-LNS)

Two over five have presented important problems All tend 'more or less' towards the same intensities

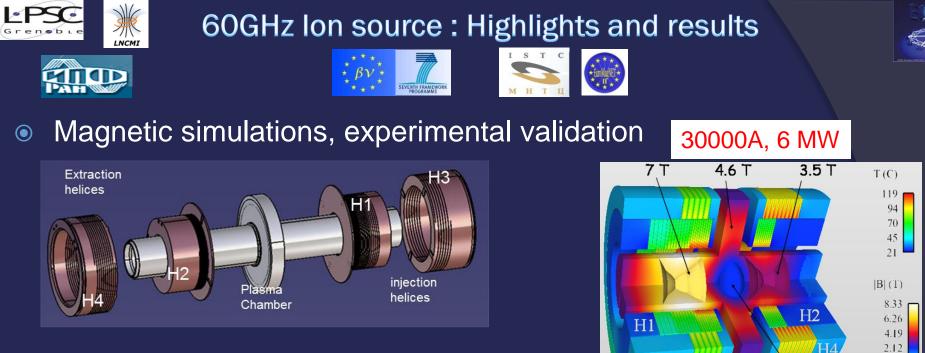
JRA01-ARES

(Advanced Research on Ecr ion Sources)

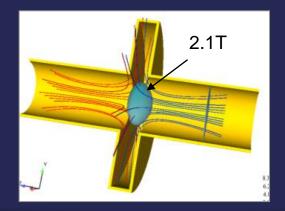
INFN - GSI - GANIL - JYFL - KVI - ATOMKI - IFIN HH - IKF

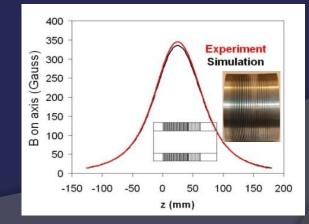


Coordinator : G. Ciavola (INFN-LNS) Deputy coordinator : K. Tinschert (GSI) Steering Committee: L. Celona (INFN-LNS) H. Koivisto (JYFL) K. Tinschert (GSI)


TASK 1-Plasma heating, Wave-plasma interaction Task Leader: INFN - Participants: INFN, JYFL, GSI, ATOMKI, IFIN-HH, IKF TASK 2- Ion beam formation and transport Task Leader: GSI- Participants: GSI, JYFL, INFN, KVI, ATOMKI, IKF TASK 3- Production of metal ion beams Task Leader: JYFL- Participants: JYFL, GANIL, GSI, INFN, KVI

All activities are devoted to increase the intensities of high charge state ion beams


• Apply high field magnets technologies to ECR ion source


- Radialy cooled Helix technique
- Collaborative context
 - National Laboratory for intense magnetic fields (LNCMI) Grenoble
 - Institute of Applied Physics, Russian Academy of Science Nizhniy Novgorod

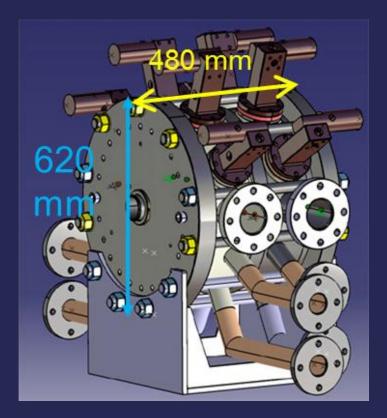
Compact design

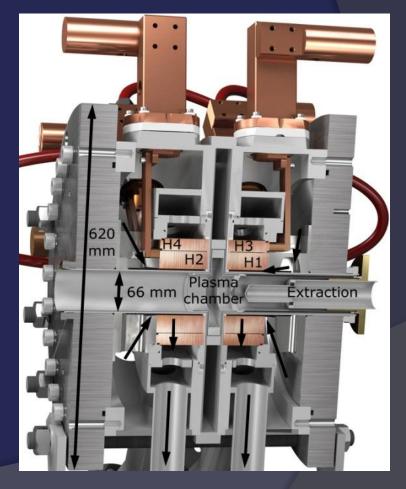
Short time between design and prototype construction

H3

0.05

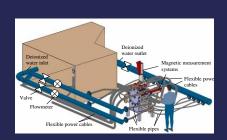
2.1 T ECR zone


60GHz Ion source : Highlights and results



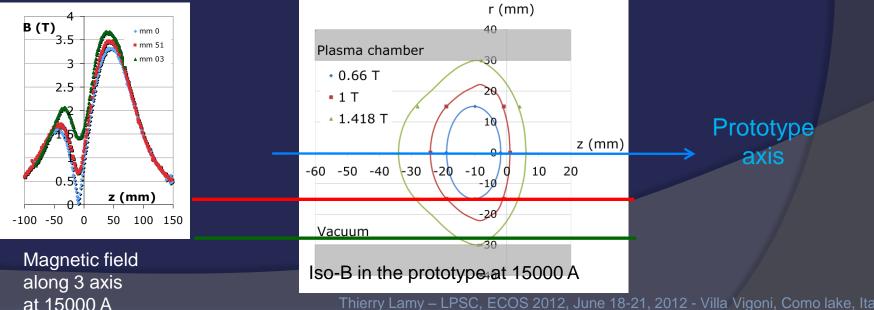
 Mechanical design and optimization of the magnetic structure prototype

60GHz lon source : Highlights and results

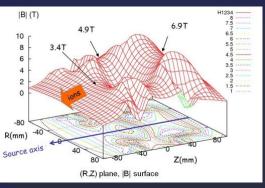


Magnetic field structure prototype construction and installation on the \odot

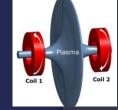
M5 LNCMI site



Magnetic field measurements from 1500 up to 15000 A \odot



60GHz Ion source : Highlights and results



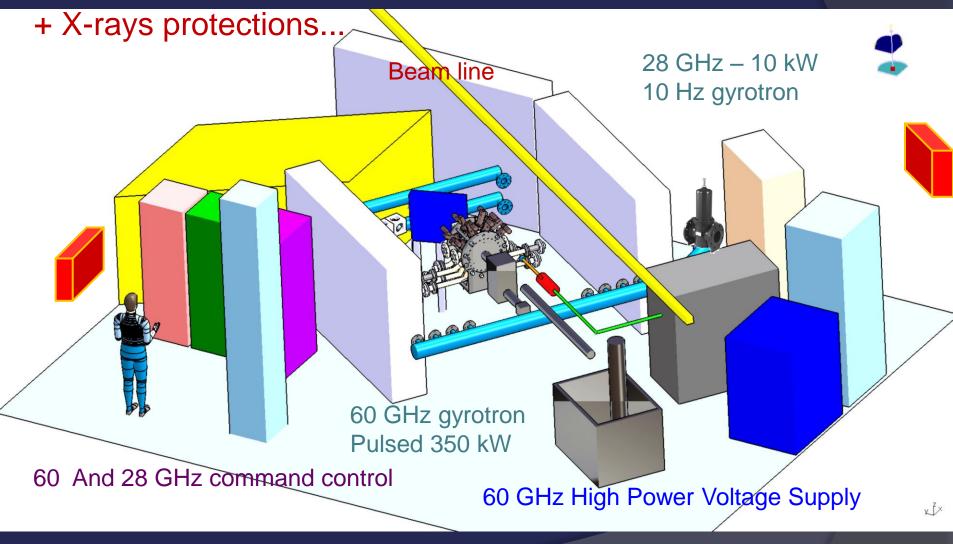
• Next experiments ion beams @ 28 GHz, B for 60 GHz

- Highest magnetic field in a cusp with a closed ECR zone
- Experiment accepted for 2*20 days
 - First beam scheduled in July or September

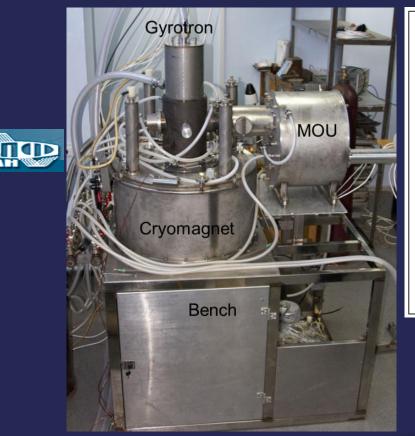
Previous experiment : M5

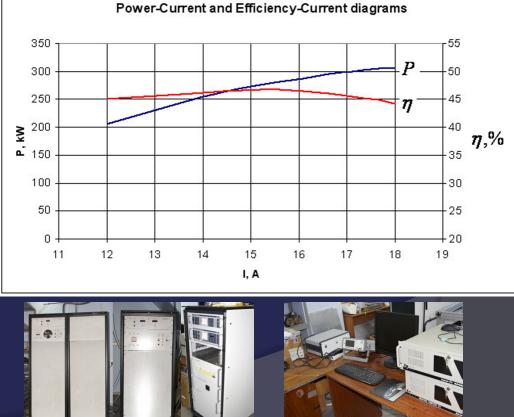
 \geqslant

A new dedicated room : M3



I P

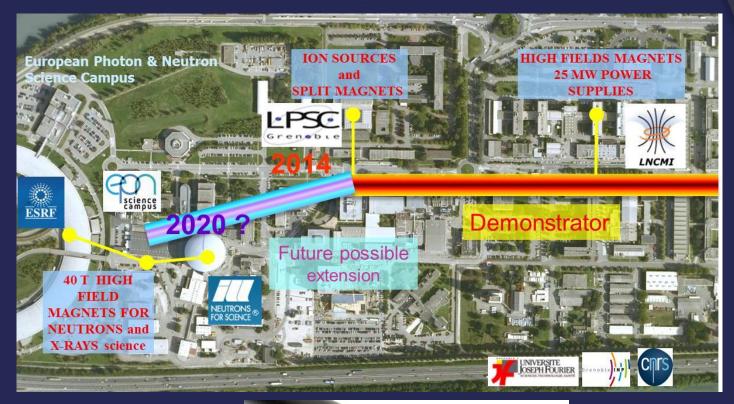



60GHz Ion source : Highlights and results

60 GHz gyrotron (10 - 350 kW / 5 Hz / 10µs - 10 ms)

(Gycom Ltd, Nizhny Novgorod, Russia)

- Should be delivered September 2012...
- Tests have just begun


Cost of a 0 - 15 kW 60 GHz : 400 k€.

COLOSSUS LNCMI + LPSC +(ESRF + ILL) ?

(4*15000 A) allowing future 28 and 60 GHz ion sources R&D, experimental studies on split magnets for ESRF and ILL

2 cryostats 600 meters long Diameter PHI 163 mm

Synergies between stable beam facilities and accelerator technologies (Ion sources - I)

- Organization of ion sources developments in Europe (the same worldwide)
 - Ion source teams (generally not more than 10 persons) are often created for the construction of a specific accelerator
 - > Once the accelerator is operational, these teams are in charge of:
 - The beam production
 - The sources operation improvements : easy tuning, stability, easy and fast maintenance...
 - Developments of specific instrumentation (ovens, bias disks, organometallic injection, extraction systems...
 - > Advantages:
 - An operational team close to the accelerator guarantee an optimal operation of the facility
 - Continuity of the experimental knowledge on specific setups
 - Better communication between accelerator physicists and ion sources specialists
 - Disadvantages
 - Production is the priority, limited time dedicated to R&D
 - Excess of specialization prevents from 'open minded' R&D
 - Risk of scientific isolation

Synergies between stable beam facilities and accelerator technologies (Ion sources - II)

- Technological synergies
 - Intense magnetic fields with high gradients
 - RF coupling in cavities
 - Beam extraction and transport, characterization and simulation
 - > Ultra high vacuum technologies, material science
 - Plama physics (i.e. plasma acceleration)
 - >

- ...

- Efficient ion sources research and developments require
 - Expensive infrastructure and equipment (often forgotten)
 - Simulation and generation of intense magnetic fields
 - Simulation and generation of high frequency-high power HF (klystrons, gyrotrons)
 - Beam lines with magnetic spectrometers and diagnostics
 - Stabilized high voltage and power supplies
 - Pressurized demineralized water
 - Mechanics specialists (CAD, simulation, workshop, treatment of parts under vacuum...)
 - Constant political (or financial) support from various physicists communities
 The 60 GHz ECRIS development has been possible with the neutrinos community

Thank you !