High Power Accelerator Modules: latest developments worldwide and perspectives for ion accelerators for stable beams

Sébastien Bousson

CNRS/IN2P3/ IPN- Paris-Sud University

ECOS Workshop – 18-21 June 2012 – Villa Vigoni

Why High Power Accelerators ?

Secondary beams produced by a high energy proton beam in a target : 5 applications in fundamental and applied research

ATLAS (ANL, USA)

ANL : ATLAS UPGRADE (1)

Project objectives: Replace the 3 existing 97 MHz split-rings by a new cryomodule to increase beam transport efficiency (\nearrow acceptance & \checkmark emittance growth) **Cavity type:** Quarter-wave resonators, f=72 MHz, β =0.077 **Goal:** Voltage = 2.5 MV (Eacc ~ 7.5 MV/m with Leff = $\beta\lambda$)

Parameter	Value	Units			
Frequency	72.750	MHz			
Peak Beta	0.077				
QRs	26.4	Ohm			
R/Q	576	Ohm			
βλ	31.75	cm			
Design Voltage	2.5	MV			
$\Delta \mathbf{f} / \Delta \mathbf{E}^2_{acc}$	-1.9	Hz/(MV/m) ²			
$\Delta \mathbf{f} / \Delta \mathbf{P}$	-2.6	Hz/Torr			
Tuning Sensitivity	~8	kHz/mm			
At Eacc= 1 MV/m					
Stored Energy	0.375	Joule			
E _{peak}	5.16	MV/m			
B _{peak}	76.2	Oe			

EM design: a conical-shape outer housing reducing by 20 % the ratio Bpk/Eacc

Cavity preparation:

- 150 µm removed by EP (12 hours total EP time) on the new ANL EP system
- HPR and assembly in a class 100 clean room

RF test of the first prototype:

Final EB @ Sciaky

Cryomodule design: 17.5 MV in 5.2 m Clean cavity string (separate vacuum)

ANL: ATLAS UPGRADE (3)

Cold Tuning System Cavity wall deformation by piezo

2 Noliac piezo stacks : 10x10x40 mm Preload: by compressing 14 Belleville washers

To know more: THIOB04 by M.P. Kelly

HIE ISOLDE (CERN)

CERN : HIE ISOLDE (1)

Project objectives: post-accelerate the RIB beam coming from REX-ISOLDE up to 10 MeV/u (intermediate phase at 5.5 MeV/u).

Cavity type: Quarter-wave resonators, Nb/Cu, f=101.28 MHz

- SC-linac between 1.2 and 10 MeV/u
- 32 SC QWR (20 cavities @ β =0.1 and 12 cavities @ β =0.06)

Performances goal: Eacc = 6 MV/m and 7 W max of dissipated power

Objectives based on past experience at INFN-Legnaro on sputtered cavities developed for ALPI

CERN : HIE ISOLDE (2)

Cavity substrate: OFE copper, 10 mm thick, cold worked; deep drawing and EB welding at CERN. A new design and fabrication process is under study.

- Specially studied beam aperture shapes (racetrack) to minimize the beam steering effect of QWR.
- Op. T 4.2 K, LHe only on the cavity top and in the stem.

Table 1: Cavity design parameters						
Cavity	Low β	high eta				
No. of Cells	2	2				
f (MHz)	101.28	101.28				
eta_0 (%)	6.3	10.3				
Design gradient $E_{acc}(MV/m)$	6	6				
Active length (mm)	195	300				
Inner conductor diameter (mm)	50	90				
Mechanical length (mm)	215	320				
Gap length (mm)	50	85				
Beam aperture diameter (mm)	20	20				
$U/E_{\rm acc}^2 ({\rm mJ/(MV/m)^2}$	73	207				
$E_{\rm pk}/E_{\rm acc}$	5.4	5.6				
$\hat{H_{pk}}/E_{acc}$ (Oe/MV/m)	80	100.7				
$R_{\rm sh}^{\prime}/Q(\Omega)$	564	548				
$\Gamma = R_{\mathbf{S}} \cdot Q_0 \left(\Omega \right)$	23	30.6				
Q_0 for 6MV/m at 7W	$3.2\cdot 10^8$	$5\cdot 10^8$				
TTF max	0.85	0.9				
No. of cavities	12	20				

New mechanical design, for a 3D fabrication from a billet

CERN : HIE ISOLDE (3)

Sputtering: 2 techniques are studied: bias diode and magnetron sputtering

Bias Diode Sputtering

Magnetron Sputtering

Courtesy M. Pasini

Ongoing RF test on cavity prototype: an accelerating field of 3 MV/m reached, with an important slope on the Q₀. Most recent results showed improvement on Eacc & Qo. Optimization of deposition parameters are undergoing (first

Optimization of deposition parameters are undergoing (first main goal: increase the RRR of the Nb film)

- 10 -

CERN : HIE ISOLDE (4)

Cryomodule: common cavity/cryomodule vacuum, superconducting solenoid

ISAAC-II (Triumf, Canada)

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

- 12 -

Project objectives: Upgrade of ISAC II (Phase 2)

Cavity type: 20 more quarter-wave resonators, beta 0.11 @ 141 MHz. Specifications: P<7 W/cavity and voltage = 1.08 MV. All cavities fabricated by local company PAVAC.

Performances:

Individual cavity testing: Almost all cavities above specs. (average Epk=32 MV/m)

 All cryomodules are installed since March 2010 and have accelerated beam with Epk=26 MV/m in average. Some studies are ongoing to increase cavity performances.*

 Common vacuum between cryomodule vacuum (thermal insulation) and beam vacuum => simplfied cryomodule design but issues with cleanliness... (conditionning)

SPIRAL-2 (GANIL,France)

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

- 14 -

GANIL, CEA, IPNO : SPIRAL-2 (1)

Project objectives: construction of a 40 MeV deuterons accelerator (which can also accelerate q/A = 1/3 and 1/6) as a driver for RIB production

alala									
THE PLANE PLANE	I TI ATTA		I.L. U.L. I	TT A TOY	ILIUIL				
←	Beta (<u>).07 ene</u>	rgy secti	on	L~35 m	Beta 0.1	<u>2 energy se</u>	ction	\rightarrow

	0 👼	Cryomodule	Α	В
	n	Valve-to-valve length [mm]	610	1360
		# cavities	12	14
		f [MHz]	88.05	88.05
		$\beta_{\sf opt}$	0.07	0.12
		Epk/Eacc	5.36	4.76
lattice 1940 mm		Bpk/Eacc [mT/MV/m]	8.70	9.35
		r/Q [Ω]	599	515
		Vacc @ 6.5 MV/m & β_{opt}	1.55	2.66
Cryomodule A Cryomodule B Power coup	oler	Lacc [m]	0.24	0.41
CEA Saclay IPN Orsay LPSC Greno	ble	Beam tube \varnothing [mm]	38	44

GANIL, CEA, IPNO : SPIRAL-2 (2)

Low beta cavities ("A" type): developped by CEA Saclay: QWR with dismountable copper bottom flange

12 over 13 cavities received – 1 under repair

Courtesy P. Bosland

GANIL, CEA, IPNO : SPIRAL-2 (3)

High beta cavities ("B" type): developed by IPN Orsay: QWR with welded Nb bottom flange, Titanium He tank (4 mm), SS cavity flanges.

Total produced: R&D phase: 1 prototype +2 pre-series Series production: 16 (made by Research Instruments)

GANIL, CEA, IPNO : SPIRAL-2 (4)

Performance Goal : 6.5 MV/m and 10 W max.

- Preparation: standard BCP, HPR @ 100 bar, class 10 clean room assembly
- All cavities exhibits multipacting. MP Barriers above 1 MV/m are easily processed. FE level and onset is variable, but when present, it is always processed in VT.
- Low β cavities: The 10 cavities tested so far are in the spec.
- High β cavities: all series cavity tested and in the spec with important margins !

GANIL, CEA, IPNO : SPIRAL-2 (4)

Performance Goal : 6.5 MV/m and 10 W max.

- Preparation: standard BCP, HPR @ 100 bar, class 10 clean room assembly
- All cavities exhibits multipacting. MP Barriers above 1 MV/m are easily processed. FE level and onset is variable, but when present, it is always processed in VT.
- Low β cavities: The 10 cavities tested so far are in the spec.
- High β cavities: all series cavity tested and in the spec with important margins !

GANIL, CEA, IPNO : SPIRAL-2 (4)

High beta cavities : baking effect

Courtesy G. Olry

– 20 –

- After 72h drying -> 48 h baking @ 120°C
- "Forced" air flow inside the helium vessel + heater on the cavity bottom
- Cavity wrapped in a foil blanket

Covity	Losses @ 6.5 MV/m [W]				
Cavity	No baking	With baking			
MB01	8.5	3.7 (-56%)			
MB02	6.9	4.1 (-41%)			
MB03	7.0	4.4 (-47%)			
MB04	8.4	3.6 (-58%)			
MB05	7.2	3.5 (-51%)			
MB06	7.5	4.8 (-36%)			
MB07	6.9	3.4 (-51%)			
MB08	Х	4.0			
MB09	8.9	3.9 (-56%)			
MB10	7.1	3.5 (-51%)			
MB11	Х	3.1			
MB12	Х	3.8			
MB13	Х	3.0			
MB14	Х	4.0			
MB15	Х	3.1			
MB16	Х	3.9			
Mean value	7.6	3.7			

GANIL, CEA, IPNO : SPIRAL-2 (5)

Low β Cold tuning system

Mechanical tuner, push system

Good linearity: 0.15 Hz/motor step Sensitivity: ~28 kHz/mm Full range: +25 kHz

High β Cold tuning system

Tuning by insertion of an Nb rod

2 ports on the top of the cavity:

- a) One static plunger
- b) One moving plunger

Sensitivity ~1 kHz/mm with Ø 30 mm plunger Introducing one plunger by 50 mm(Ø 30 mm) First "coarse" tuning: + 50 kHz then fine tuning: +/- 4 kHz

GANIL, CEA, IPNO : SPIRAL-2 (6)

Low β Cryomodule

High β Cryomodule

Two different layout, but both have separated vacuum (clean string assembly)

Power couplers: developed, prepared and conditionned by LPSC Grenoble

FRIB (MSU, USA)

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

- 23 -

MSU : FRIB (1)

Project objectives: Produce RIB using a 400 kW CW heavy ion driver linac (p to U) up to 200 MeV/u.

Cavity type: Quarter-wave resonators (80.5 MHz) and half-wave resonators (322 MHz), bulk niobium for a total of 344 cavities and 52 cryomodules

Courtesy Q. Zhao, R. York

in []: matching cryomodule

MSU : FRIB (2)

Cavity type: Quarter-wave resonators (80.5 MHz) and half-wave resonators (322 MHz), bulk niobium for a total of 344 cavities and 52 cryomodules

Туре	λ/4	λ/4	λ/2	λ/2
β _{opt}	0.041	0.085	0.29	0.530
f(MHz)	80.5	80.5	322	322
Aperture (mm)	30	30	30	40
V _a (MV)	0.81	1.62	1.90	3.70
E _p (MV/m)	30.0	31.5	31.5	31.5
B _p (mT)	53	71	75	77
T(K)	4.5	4.5	2.0	2.0

4 cavity types and 2 frequencies

MSU: FRIB... and ReA3 (3)

Cavity study status:

• Developments for ReA3: a FRIB technology "prototype" : β =0.041 QWR cavities successfully accelerates beam at ReA3; tested for FRIB gradients (first accelerated beam by the cryomodule in May 2011)

• 5 β=0.53 HWR prototypes fabricated and 3 tested

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

- 26 -

 2_0 from $P_f P_r - P_t$

MSU: FRIB... and ReA3 (4)

Cavity study status:

• Test of β=0.085 QWR prototype

Cavity tests performed at 2K and 4.2 K

Thermal calculations showing previous tuning plate above the critical temperature for superconductivity

Improved tuner design under progress

IFMIF (EU, Japan)

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

- 28 -

SOURCE

BEAM EXTRACTION

10

20

Cavity type: Half-wave resonators

30

Courtesy F. Orsini

IFMIF - EVEDA

Project objectives: characterization of materials with intense neutrons flux (10¹⁷ n/s) for the future Fusion Reactor DEMO (~150 dpa). Based on two CW 40 MeV deuterons SC linac, 125 mA each. EU + Japan Collaboration

EVEDA (demonstrator)

Parameters	Target Value	Units
Frequency	175	MHz
β value	0.094	
Accelerating field E _a	4.5	MV/m
Unloaded Quality factor Q_0 for $R_s=20 n\Omega$	1.4 10 ⁹	
Freq. range of HWR tuning syst	50	kHz
Max. transmitted RF power by coupler (CW)	200	kW
External quality factor Q _{ex}	6.3 10 ⁴	

IFMIF - EVEDA

IFMIF Linac : 2 X deuteron beam 40 MeV, 125 mA CW each

IFMIF - EVEDA

Prototyping status: 2 prototypes have been fabricated and are under testing phase. Results shows strong MP barriers, abnormal dissipation in the cold tuning system location.

Cavity HPR @ l'IPNO

Cold tuning system ("mushroom")

SOREQ (Saraf, Israel)

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

- 32 -

SOREQ : SARAF

Project objectives: SARAF phase 1 : a 2 mA protons and deuterons beam up to 4 MeV (resp. 5 MeV).

Cavity type: 6 Half-wave resonators / module; beta 0.09 @ 176 MHz. Specifications: P<10 W/cavity @ Epk=25 MV/m (Eacc=5MV/m)

Courtesy I. Mardor

PSM Cryomodule test:

- Each of the cavities individually reached stable operation at its specified field (Epk of 25 MV/m, corresponding to a voltage of 840 kV).
- FE: Improvement after He processing (a few 10⁻⁵ mbar)
- Difficulties with stable simultaneous operation of all cavities at nominal field due to cavity high sensitivity to He pressure

variations (60 Hz/mbar).

- -> difficult to compensate with the tuner (strong hysteresis)
- Increase of available RF power from 2 to 4 kW to compensate

ESS (Lund, Sweden)

- 34 -

ESS (European Spallation Source)

ESS Linac: High power proton accelerator, 5 MW

- Pulse 2.86 ms
- Rep. rate: 14 Hz
- Protons (H+)
- Low loss
- High reliability >95%
- Modular design for future upgrade

Investment cost: $1478 \text{ M} \in \text{over} \sim 10 \text{ years}$ Operation cost: $106 \text{ M} \in / \text{ year}$ Dismounting : $346 \text{ M} \in (2008 \text{ costs})$

UPPSALA

UNIVERSITET

ESS (European Spallation Source)

SOURCE

UND

- 36 -

UNIVERSITY

FDSL 2012 05 15

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

NSTITUT DE PHYSIQUE NUCLÉAIRE

ORSAY

ESS (European Spallation Source)

ESS Master Programme Schedule

ESS (European Spallation Source)

Spoke cavity & cryomodule (IPNO)

Elliptical cavity & cryomodule (IRFU + IPNO)

MYRRHA (Mol, Belgium)

S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio

- 39 -

MYRRHA

- Main goal: nuclear waste transmutation with and ADS
- MYRRHA (Multi-Purpose hYbrid Research Reactor for High-tech Applications)
- Project initiated and lead by SCK-CEN (Mol, Belgium)
- Goal: operation ~2023
- ISOL @ MYRRHA possible

Reactor

- subcritical mode (50-100 MWth)
- critical mode (~100 MWth)

MYRRHA

	Transmuter demonstrator (XT-ADS / MYRRHA project)		Industrial transmuter (EFIT)	
Proton beam current	2.5 mA (& up to 4 mA for burn-up compensation)		~ 20 mA	
Proton energy	600 MeV		800 MeV	
Allowed beam trips nb (>3s)	~ <19 per 3-month operation cycle		~<3 per year	
Beam entry into the reactor	Vertically from above			
Beam stability on target	Energy: $\pm 1\%$ - Current: $\pm 2\%$ - Position & siz	e: ±10%		
Beam time structure	CW (w/ low frequency 200µs beam "holes" for	sub-o	criticality monitori	ng)
Challenge #2: Ext	treme reliability required !			

Challenge #1: High power CW beams

MYRRHA

Reliability guidelines have been followed during the ADS accelerator design

 Strong component design & derating: components derated with respect to tech. limitations; prototyping & test on each key components (FP6-7 EU programs)
Redundancies in critical areas: Front-end duplication, solid-state RF amplifiers
Capability of fault-tolerant operation : Expected in the highly modular superconducting RF linac (from ~20 MeV) -> Implies reliable and sophisticated digital RF control systems (preset op. set points)
S. Bousson – High Power Accelerator Module - ECOS 2012 – 18 to 21 June 2012- Menaggio -42 –

Conclusions

-43 -

Conclusion (1)

Intrinsic advantage of cold cavities

Almost no losses on the cavity wall (thanks to superconductivity)

 \Rightarrow ~100% of the injected RF power goes to the beam : very high efficiency !!!

- Operating cost gain as compared to warm structures (which dissipate ~10⁵ times higher)
- Possibility to accelerate CW beams or beams with a high duty cycle (> 1 %) with high accelerating gradients (impossible with warm structures)
- Possibility to relax the constraints on the cavity RF design: choosing larger beam port aperture is possible ⇒ reduction of the activation hazard = <u>security gain</u>
 - High potential for **reliability and flexibility**
 - Main drawback : need to be operated at cryogenic temperature

Conclusion (2)

Almost no losses on the cavity wall (thanks to superconductivity) $\Rightarrow \sim 100\%$ of the injected RF power goes to the beam : very high efficiency !!!

Superconducting technology:

- Is a technology of choice for high power acceleration, thanks to intrinsic efficiency and its maturity gained over the past 25 years.
- Can efficiently accelerate high (and low...) power ion beam starting from a few MeV/u (starting at β ~ 0.05)

• The type of cavity and implementation in the accelerator needs to be carefully chosen according to beam specifications and requirements: range of β , beam current, variety of beam species to accelerate, final energy, reliability, upgradability, ... and cost !

• The cavity type or design IS NOT the whole story: coupling the power to the beam, tuning the cavity, prepare the cavity (dust is a tough and invisible enemy !), integration in a cryomodule are even more potential sources of problems.

Low beta superconducting cavities

• SC RF developments for low beta ion accelerators is very active worldwide; many projects are under study or construction and drive intense R&D programs on such accelerating structures.

-> Potential for real technical synergies between the projects

• There are many issues faced by all projects for these structures: field emission, multipacting, tuning capabilities, and all required a dedicated study because all cavities are different (cavity type, frequency, β , coupling or tuning solutions)...

 Progress done are tremendous, and in some cases, peak fields achieved start to be comparable with the ones obtained on electron cavities.

THANK YOU FOR YOUR ATTENTION!

- 48 -