ECOS 2012 Workshop Loveno di Menaggio, 18-21 June 2012

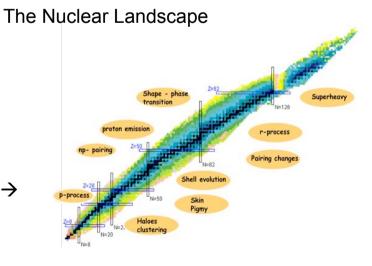
de Huelva

Present status of the LRF facility

Ismael Martel Department of Applied Physics University of Huelva (Spain)

History:

 \rightarrow 1492, the discovery of America: Shipbuilders, Caravels and the crew of Cristobal Columbus were from Huelva. Depart from a small port located at the village of Palos de la Frontera (Huelva).


→1889, first football team in Spain (soccer) founded by British workers at "Rio Tinto" mines (Rio Tinto Company, London, 1873).

→1960's, one of largest industrial sites in Spain (Chemicals, Petrol & Mining industry)

→1992, University of Huelva was born, one of the youngest Universities of Spain. (15.000 students/150.000 habitants of Huelva) → Mainly Technical University/Engineering 1992

 \rightarrow 1999, the Nuclear & Particle Physics group ~ 20 staff (spec. + instrument.)

 \rightarrow 2012, the Linac Research Facility

The Linac Research Facility (LRF)

User oriented facility for producing intense HEAVY ION BEAMS for basic research on nuclear physics and applications. UNIVERSITY FACILITY (→students/masters/PhDs/etc).

\rightarrow OPEN INTERNATIONAL COLLABORATION \leftarrow

High intensity superconducting linac.

- Wide range of heavy ions
- Wide range of energies, from keV/u ~15 MeV/u
- Maximum intensity for HI (~100uA, ⁴⁰Ar)
- protons up to 30 MeV (~1 mA); up to 70 MeV (nA)

PROGRAM: Basic nuclear physics

- Nuclear reactions and spectroscopy with stable, high intensity, beams:
 - \rightarrow European ECOS initiative for high energy accelerators:

Super-heavy & Nuclear astrophysics → long periods of beam time demanded Nuclear structure studies at low medium and high-spin Clusters and molecules in nuclei Ground-state properties Near barrier transfer and fusion

IGISOL type ion source: stopped beams (beta-decay, beta-particle, masses, etc).

APPLICATIONS

→ Project driven by applications and industry: Science & Technology Park - PCTH

-Modern radio-isotope production (heavies: Mo, I, Sc, Se, ...)

-Medicine (branchiotherapy; proton therapy; dosimetry,...)

-Material research for energy (Fusion energy, solar cells, ...)

-Aerospace

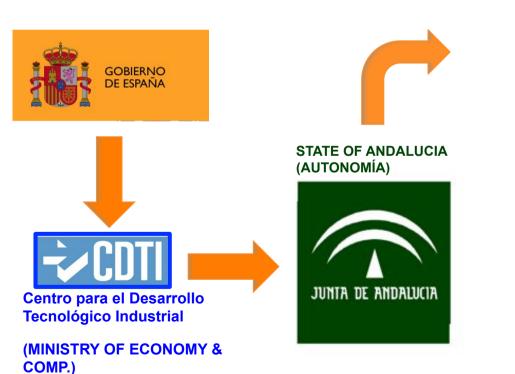
-lon implantation

-Applications impose very demanding beam intensities and energies

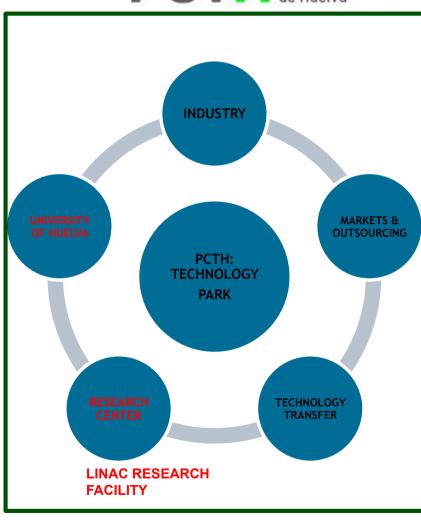
\rightarrow basic research

LINAC CONSTRUCTION

Interested companies:


ACS, France ADEVICE, Spain AIR LIQUIDE, France & Spain ALTER TECHNOLOGY, Spain APLICACIONES TECNOLÓGICAS, Spain A-V-S, Spain CIBERNOS, Spain CRIOLAB , Portugal EBS Group, Italy & Spain ELYTT ENERGY, Spain EMPRESARIOS AGRUPADOS, Spain IBERDROLA, Spain IDOM, Spain I2FACTORY, Spain INDRA, Spain INGESER, Spain JEMA, Spain LINDE KRYOTECHNIK AG, Switzerland & Spain PANTECHNIK, France PRAXAIR, EEUU& Spain SEVEN SOLUTIONS, Spain THARSIS TECHNOLOGY, Spain TTI NORTE, Spain

LINAC RESEARCH FACILITY: INDUSTRY & BASIC SCIENCE EUROPEAN UNION ERDF PROGRAM:


European Regional Development Funds - UNDEVELOPED REGIONS OF EUROPE (HUELVA) - EU: > 75 % COST SUPPORT OF INFRASTRUCTURE

- PARTICIPATION OF SPANISH INDUSTRY

FONDO EUROPEO DE DESARROLLO REGIONAL

PCTH Parque Científico y Tecnológico de Huelva

I. Martel, University of Huelva (Spain)

INDUSTRY FUND.		Meur	2011	2012	2013	2014	2015	2016	2017	AN STRAND OF BE
INNPLANTA	Buildings	10.8								
INNPLANTA	LINAC	15.4								ALL THE ALL
INNTERCONECTA	R&D	1.4								Eniversidad de Huelva
<u>?? 2012 ??</u>	Commissioning +??	??								and a factor

LRF ORGANIZATION (TODAY):

- PART of a Research Centre of the University of Huelva, "CENTER FOR ENERGY RESEARCH"

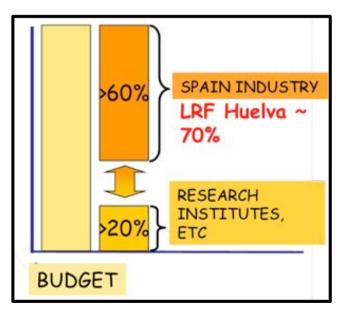
-Research groups (~ 60 staff)

-Technical staff (~ 6 staff)

- Also lecturing activity (Postgraduate)

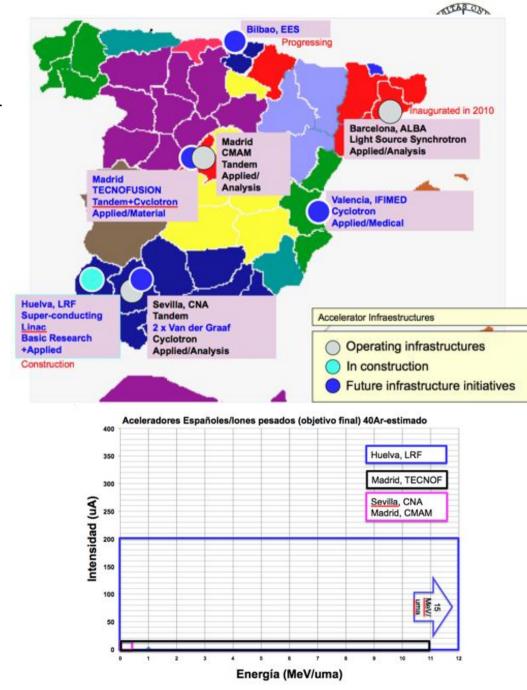
- Participation of PCTH (State of Andalucía, industrial partners & other companies)

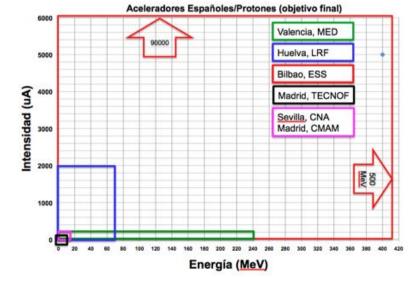
- Budget (Personnel, running costs, etc):


- University (Staff + Project overheads)
- Funding grants: Andalucía, Spain, European Union.

ENERGY RESEARCH CENTRE							
DIRECT	OR OF THE RESEARCH CENT	RE					
DEPARTMENT OF NUCLEAR TECHNOLOGY	DEPARTMENT OF ELECTRIC POWER						
Head of Department	Head of Department						
Research groups: nuclear reactions, medical physics, particle detectors, theory	Research groups	Research groups					
FACILITIES & LABS (LINAC RESEARCH FACILITY)	FACILITIES & LABS	FACILITIES & LABS					

Budget @ June 2012


Land is provided by university/PCTH10.8 Meur building15.4 Meur LINAC


-3/4 years schedule for delivery (not commissioning)

Panorama of accelerator facilities in Spain for basic research and applications.

Valencia: IFIMED Bilbao: ESS Madrid: TECNOFUSIÓN Madrid: CMAM Seville: CNA Huelva: LRF

LRF-BASIC RESEARCH

Main topics for a high intensity machine:

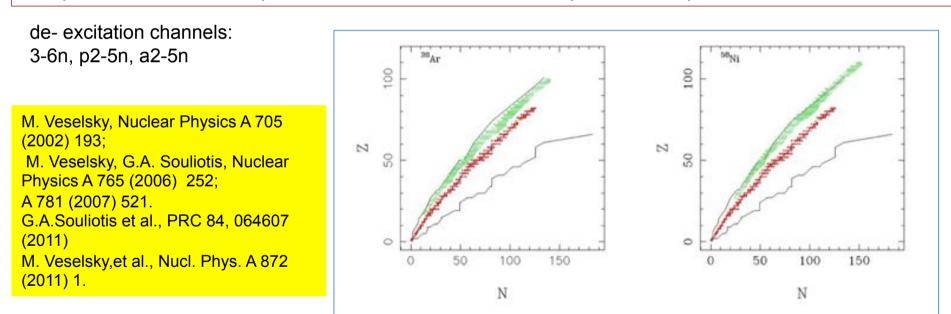
Superheavy nuclei are new elements of the Periodic Table which have been predicted to exist. They cannot be found in The Earth, but can be synthesized by heavy ion collisions like 48Ca+248Cm at high collision energies. One of the last elements accepted by IUPAC is the Darmstatium, given by the city name of Darmstadt (Germany) where the heavy ion laboratory GSI, where it was discovered, is located.

Astrophysics: The light of the stars come from the fusion reactions taken place in their core and the explosions occurring as novae and super-novae. In this way the elements of the Periodic Table are synthesized, the so called **nucleosynthesis**. The fusion reactions of this hot scenario with intense, high energy heavy ion beams, and therefore study the process of nucleosynthesis.

In-beam spectroscopy of exotic nuclei using thick-thin targets

40Ar ~ 14 MeV/u
86Kr ~ 8.5 MeV/u
84Kr ~ 10 MeV/u
136Xe ~ 7 MeV/u

Typical beams

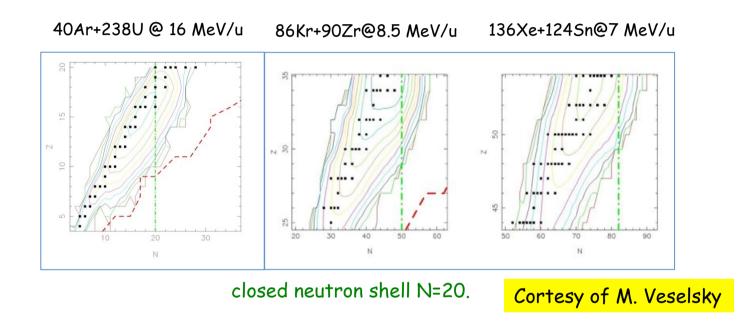

Exotic isotope production:

Height of the Coulomb barrier ~ 4 to 5 MeV/nucleon

 \rightarrow compound nucleus/fus.evap reactions, E ~ Eb \rightarrow proton rich

 \rightarrow reactions of nucleon exchange, E>> Eb \rightarrow neutron rich

Compound nucleus/fus. evap reactions \rightarrow Basic mechanism for production of proton rich nuclei

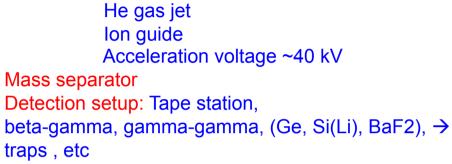

Accessible regions of the proton rich nuclei (green), which can be produced using proton rich ion beams such as 36Ar (left) and heavier ions 58Ni (right) in the compound nucleus reactions. Red region represents stable target nuclei. Lines represent the proton and neutron driplines.

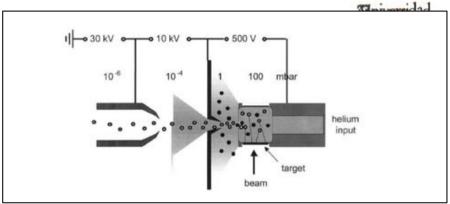
Cortesy of M. Veselsky

Production of neutron rich nuclei

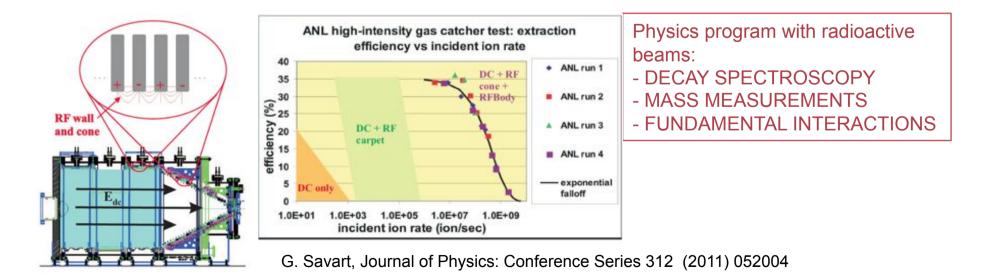
-preferably "cold" processes with minimum neutron loss. \rightarrow Reactions of heavy ions with energies around > 10 MeV/u

Example (Vamos, GANIL):

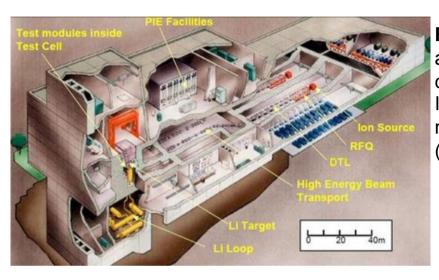

- intensity of 0.1 puA
- target thickness 50 mg/cm2
- \rightarrow production around 10 nuclei per second


```
For present facility,
10 puA \rightarrow 10**3 pps on target!!!
```

Radioactive beam line: IGISOL


Isotope production and extraction pioneered at Jyvaskyla (J. Aysto et al.)

Ion source



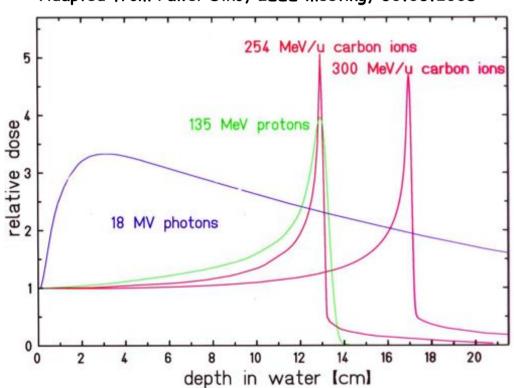
→ GAS CATCHER: a large volume of high-purity helium gas surrounded by a guiding structure where the ions lose their energy and are extracted rapidly into a beam forming region

LRF-APPLICATIONS

Material research for energy production

Eniversidad

Fusion energy research: aiming at qualifying advanced materials resistant to extreme conditions, specific to fusion reactors like ITER. Intense ion beams of moderate energy are needed to simulate fusion reactor conditions. (CIEMAT)


IFMIF project: a 40 MeV, 125 mA deuteron + lithium target \rightarrow neutrons to test materials for the first commertial fusion reactor : the DEMO reactor

	A	z	E (MeV)
c .	12	4	146,7
si	28	9	318,2
Fe	56	14	385,0
w	184	25	373,6
н	1	1	up to ~ 40

Why protons for cancer radiotherapy?

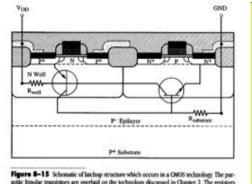
HOSPITAL JUAN RAMÓN JÍMENEZ -HUELVA

Proton Therapy is particularly appropriate in situations where conventional radiotherapy presents an unacceptable risk to the patient – cancer of the eye, brain and paediatric cases. Proton and carbon linacs are the most refined technique to cure tumours and cancer disease.

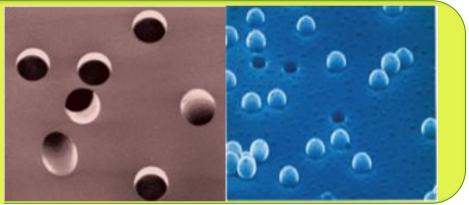
Adapted from Pawel Olko, IEEE meeting, 30.06.2008

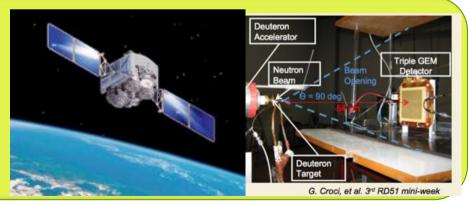
well defined range of proton beamvery precise irradiation

E (MeV)	Depth (mm)
10	1
20	4
50	22
100	76
120	105
150	155
200	256

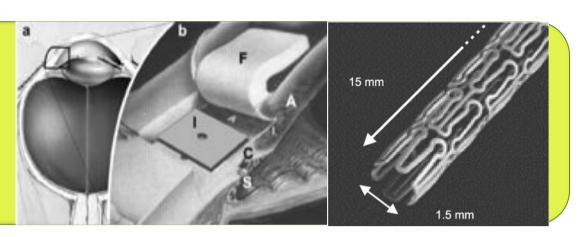


Material modification produced with intense ion beams are used for fabrication of new materials. Incipient diamond material industry for fabrication of microelectronic devices and hard radiation sensors for energy applications.

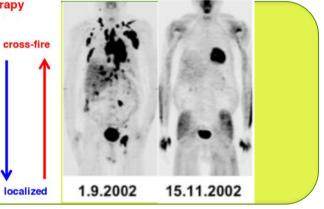

MECHANICAL SCAN END STATION



are normally connected as shown in the schematic.


Microfiltration of membranes by heavy ions. Heavy ion beams are used to produce track-etched microfiltration membranes commercialized by various brands. In these membranes, tracks of slow, heavy ions crossing a sheet of polymer are chemically etched, giving cylindrical pores of very accurate diameter: Epifluorescence microscopy, Environmental analysis, Fuel testing, Parasitology, Air analysis and pharmaceuticals.

High intensity ion beams are used in **aerospace programs** for radiation resistant electronics and in nuclear energy applications. Quality tests are required in order to accomplish with UE safety regulations for energy control and aerospace on-board electronics. Research can be centred on the impact of radiation on the response of new device technologies and single-event effects in new technologies and ultra-small devices.



Brachytherapy techniques are developed in modern hospitals to treat tumours in eye (glaucoma), lungs and critical organs. **Ischemic heart disease** is treated by radioactive ions implanted in foils. The activation process is carried out at accelerators.

Modern radioisotopes are currently investigated to treat in a more efficient way the different tumours and cancer disease of our society. More than 1 million UE citizens die every year from cancer. New isotope production will be investigated at LRF-Huelva facility. An example is 177Lu for lymphoma therapy.

Radionuclides for radioimmunotherapy Radio- Half-E mean Ey Range nuclide life (keV) (keV) Y-90 64h 934 β 12 mm I-131 8 days 182 β 364 3 mm Lu-177 7 days 134 B 208. 2 mm 113 Tb-161 7 days 154 β 75 2 mm 5, 17, 40 e 1-30 µm At-211 7.2h 5870 α 45 µm -Tb-149 4.1h 3967 α 165... 25 µm localized Er-165 10.3 h 5.3 e . 0.6 µm

^{99m}Tc: ideal for SPECT and gamma cameras

Ru 98 1.87		Ru 99 12.76	Ru 100 12.60	Ru 101 17.06	Ru 102 31.55	
ar < 8		σ4	a 5.8	a 5	σ1.2	
TC 92.2 d ^h / ⁽⁹⁷⁾	97 4.0 · 10 ⁶ a	Tc 98 4.2 · 10 ⁶ a ^{β⁻0.4} ^{γ745;652} σ 0.9 + ?	Tc 99 6.0 h 21- 10 ⁵ a ^h / ₂ ¹⁴¹ - 03 8 ⁻ 1/322 1 23	Tc 100 15.8 s β 3.4 ^ε γ540; 591	Tc 101 14.2 m β ⁻ 1.3 γ307; 545	
Mo 96 16.68 #0.5		Mo 97 9.56 σ _{n.α} 4E-7	Mo 98 24.19 #0.14	Mo 99 66.0 h β ⁻ 1.2 γ740; 182; 778 m; g	Mo 100 9.67 1.15 • 10 ¹⁹ a 28 ⁺ 9.19	

• IT with 89% 140.5 keV gamma ray, $T_{1/2} = 6 h$

· decays to quasi-stable daughter

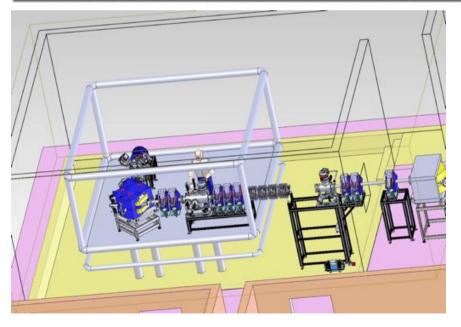
• ^{99m}Tc fed in 88% of β ⁻ decays of ⁹⁹Mo, T_{1/2} = 66 h • produces nearly carrier-free product

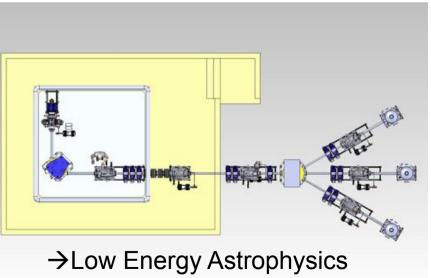
Production of ¹⁷⁷Lu

Ta 175 10.5 h	Ta 176 8.1 h	Ta 177 56.6 h	Ta 178 925 m 245 h	Ta 179 665 d	Ta 180 0.012	Ta 181 99.988
* 7 207; 349; 267; 82; 126; 1793	β* γ 1159; 88; 1225	β* γ 113; 208	5*0.9 190,1300 4 1341	no γ 0 π 930	#-560 d 104	ar 0.012 + 20 on. ar <10
Hf 174 0.16 2.0 · 10 ¹⁵ a e 2.50 e 600	Hf 175 70.0 d	Hf 176 5.26	Hf 177 51 m 1.1 s 18.60 ^{hy} 777; 294; 0.19 ⁻¹ 295; 229; +1 327; 379, -375	Hf 178 31 a 4.0 s 27.28 hy hy 574, 428, 495, 528, 97 217, 213, 454 or 45, 89, 932	Hf 179 256 18.76 13.62 ^{hy} 454; 385; 122; hy214 = 0.43 146 465;	Hf 180 5.5 h 35.0 19332 443; 235; 57 13 3 ² m
Lu 173 1.37 a [•] [•] [•] [•]	Lu 174 142 d 331 s 1745, 67., 1002; 1042, 273.,3 %.	Lu 175 97.41	Lu 176 2.59 1.45 b 34 102 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.5	Lu 177 160.1 6. 871 d 107 1005 107 1005 108 108 108 108 108 108 108 108 108 108	Lu 178 22.7 m 28.4 m 5°.20. 1585 1345 1345 1345 1345 1345 1345 1345 134	Lu 179 4.6 h ^{6⁻1.4} ^{9⁻14}
Yb 172 21.83 an. a <1E-6	Yb 173 16.13 #16 #16 #18	Yb 174 31.83 ^{α 63} σ _{n. a} <0.00002	Yb 175 4.2 d β ⁻ 0.5 γ396: 283: 114	Yb 176 12 s 12.76 14,283 300,190; #11 30*156	Yb 177 6.5 s 1.9 h 9"14 1y 104: 220 1000, 122; 1241 9"	Yb 178 74 m ^{5*0.6} ^{7391; 348;}
Tm 171	Tm 172	Tm 173	Tm 174	Tm 175	Tm 176	Tm 177

LOW ENERGY BEAM LINE: ION SOURCE AND 400 KV PLATFORM

Wide range of ions 2 high intensity: Commercial options/ ECR ion source (Pantechnik).


kn s/Q	1+	2+	4+	6+	8+	9+	11+	14+	20+	23+	25+	26+	27+	30+	31+	32+
н	2000															
H ₂	1000															
Ha	700															
He	2000	1000														
C	500	350	200	3												
N	1000	300	100	10												
0	1000	400	300	200												
Ne	1000	300	200	160	25											
Ar	1000	350	250	200	200	90	30	1								
Kr	1000		1.00				25	15								
Ag			250	250	200	90	30		4							
Xe	500				220				15	14	10	5				
Та									4	0.8						
Au												10	6	1	0.7	0.2
РЬ									10		5	3	1			



Eniversidad de Huelva

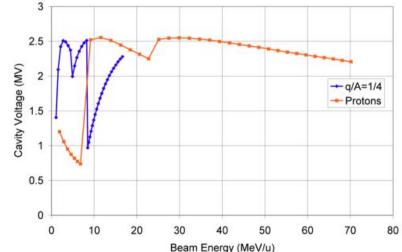
Preliminary arrangement of 400KV-HV platform and optics at LRF-Huelva (LNL, ANL, TRIUMF, etc).

 \rightarrow Ion implantation

PRELIMINARY LINAC PARAMETERS AND CONFIGURATION

LRF-Huelva calculation (P. Ostroumov, ANL)

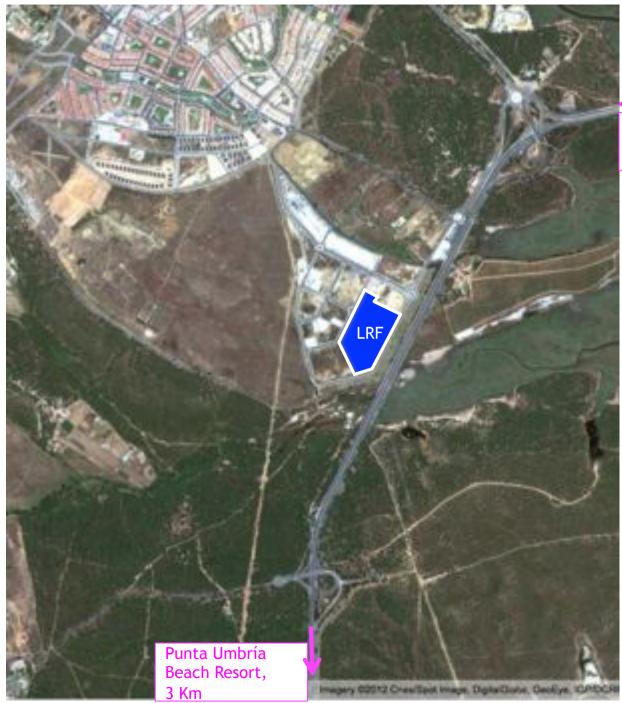
Specifications:


- High intensity Heavy ion accelerator up to 15 MeV/u (40Ar 200uA, 130Xe 10 uA)
- H, D 1mA, 30 MeV; H, 1uA 72 MeV

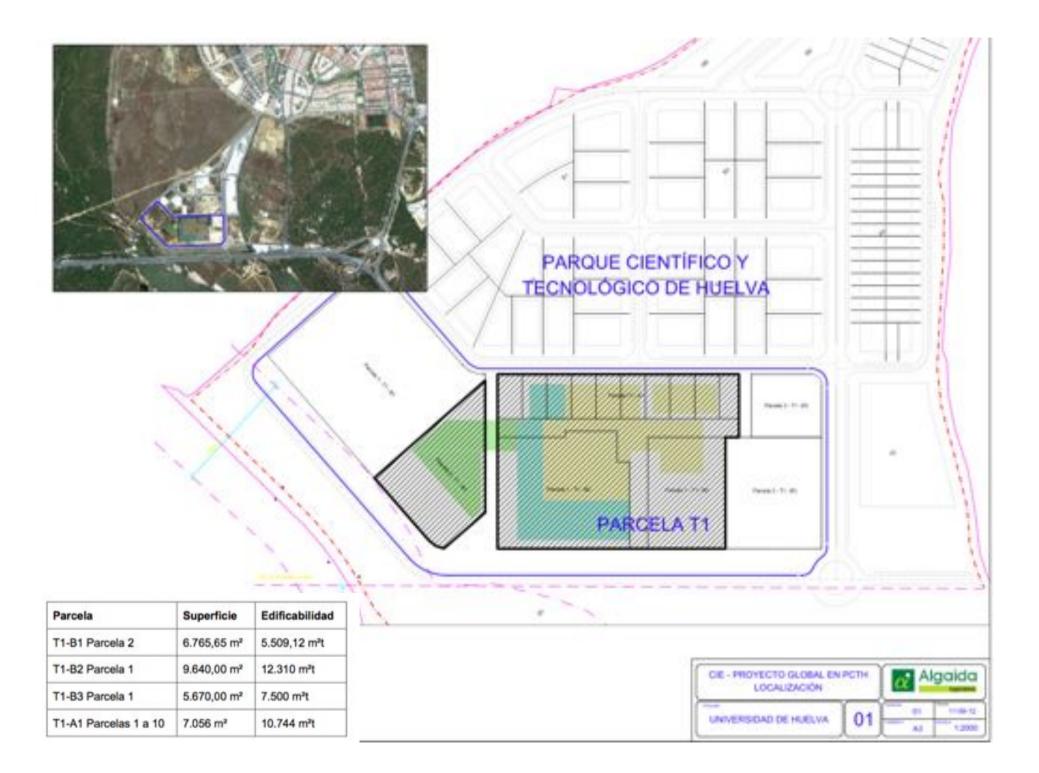
 \rightarrow limited by ECR ion source

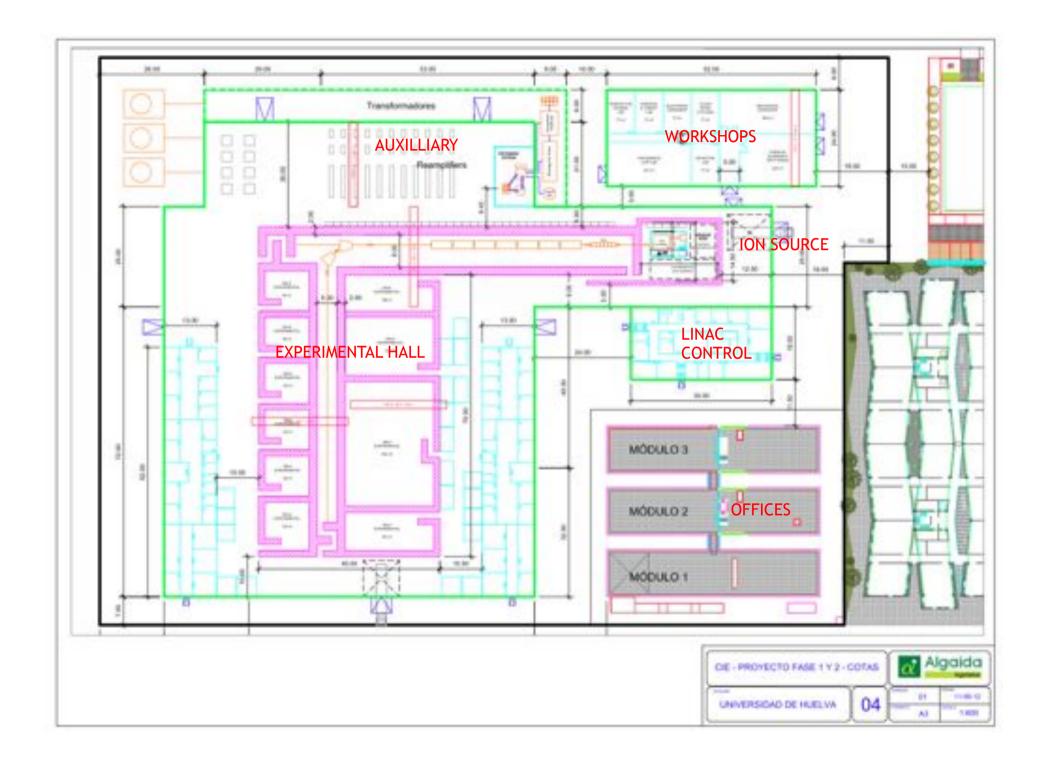
Possible configuration (still to be decided):

- Ion source + Low Energy Beam Line
- MBH: Multi Harmonic Buncher
- RFQ: "Radio Frequency Quadrupole" accelerator (injector)
- 35 SC cavities


2010/01/02/02/02	Frequency, MHz	Ворт	Number of cavities	Comments
MHB*	36.375 (the 1 st harmonic)	N/A	1	
RFQ	72.75	N/A	1	Based on ANL 60.625 MHz RFQ
QWR1	72.75	0.077	7	Design is available as ANL/ATLAS upgrade cryomodule
QWR2	109.125	0.15	7	Design is available as ANL/ATLAS upgrade cryomodule
HWR	181.875	0.25	14	Prototype cavity (f=170 MHz) was demonstrated at ANL

Parameter	Value	COST/Time	Comments
Ion Species	Heavy ions, protons		SCR ion source
Current Range	~1-2 mA (protons) ~ 500uA – 10 uA HI		HI intensities depends strongly on Q/A
PHASE 1	20 MeV protons 9 MeV/u HI	15.4 Meur ~3 years	Auxilliary, Cryogenics, Ion source, LEBT, RFQ, 2 x cryomodules (7 x SC), 2 beam lines
PHASE 2	55 MeV protons 15 MeV/u HI	5 Meur 2 years	2 x Cryomodule, Ext. Cryogenics, full experimental hall, IGISOL
PHASE 3	72 MeV protons 18 MeV/u HI	3 Meur 1 year	1 x Cryomodule, proton therapy line




Huelva City 3 Km

Barceló Punta Umbría Mar: LRF "Guest House"

LRF Working group meeting at Hotel Barcelo Punta Umbría (March 2012)

International Scientific Committee (ISC). Coord. Giuseppe Verde
 → International User Group (IUG)
 → Must organize a meeting soon

-Working group for conceptual design study (CDS-WG)

1.Ion Beam Dynamics Group/IPNO (coordinated) + Bilbao-ESS

- SC & general IPNO - March

- RFQ/Bilbao - April

- first contact with industry participation

2.General Layout and Technical developments/GANIL+LNL+CMAN (coordination?)

- Visit of UHU + Industry to GANIL (May)

- Visit of UHU + Industry to LNL (July)

→ First proposal/economical estimation of building based on GANIL structure (IDOM, Algaida) \rightarrow to be circulated to CDS.

3.Safety and Radioprotection

- Preliminary estimates by UNED-Madrid+UPV

- Meeting Friday-22 June UHU-UNED-GANIL(?)

-Technical Advisory Committee

-urgent advice on the choice of SC cavities \rightarrow message sent to collaboration

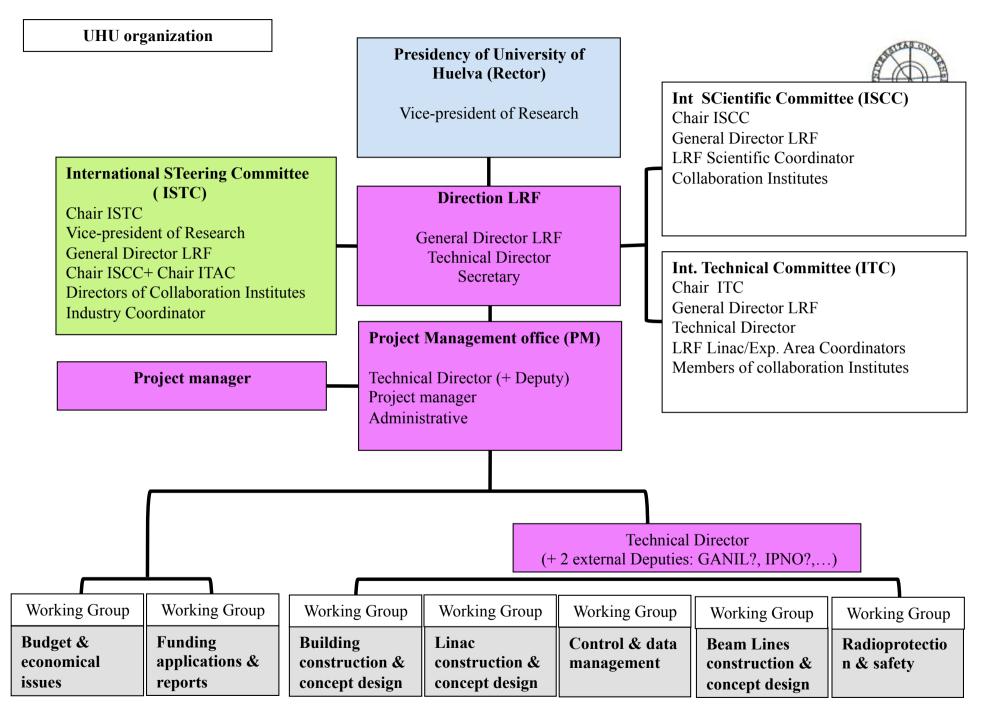
-International Steering Committee: in progress

Actions:

1. Signature of MOU's between institutes:

- Already signed: UHU//ESS-Bilbao
- Sent: UHU//LNL & UHU//CIEMAT & UHU//UNED
- Rest of MOUs being prepared/ submit before end of June.
- 2. Local LRF staff at Huelva University + training programs

5 staff people: Control Safety General infraestructure Low energy + RFQ High energy + SCC \rightarrow 2 staff sent to CERN school Ion Sources/Bratislava \rightarrow 2 staff application for CERN School at Granada (Spain).


2 postdocs:

General LRF technical coordination Auxilliary labs

1 mechanical engineer working at CERN trainning program /auxilliary systems (2 y +1 y)/ June 1st 2012. 1 Administrative

- 3. Funding for man power: OK, 6 specialized 3y contracts / expect call to be ready by end of June 2012.
- 4. Technical Director: accelerator expert at Huelva, in progress
- 5. Deputy Technical Director: LNL?, IPNO?, GANIL?... in progress

I. Martel, University of Huelva (Spain)

Summary & Conclusions

A new superconducting high-intensity heavy-ion linac is being build at University of Huelva:

- High Intensity Superconducting Linac as base design (from the beginning)
- Using most modern SC technology (ANL, Spiral2, LNL, ...)
- Enormous Range of ions: from H up to Pb
- High intensities: 200uA 40Ar,

 \rightarrow ECOS facility for high intensity beams

→Test facility for future high intensity accelerators

HOT SPOTS

- Choice of SC cavities for an ECOS class facility
- Superconducting RFQs?
- High power target development
- Large scale detector arrays (CMS??)

International collaboration:

(...)

ANI -USA CENBG - Bordeaux, France CIEMAT-Madrid, Spain CMAM-Madrid, Spain CSIC-Madrid, Spain FLNR-Dubna, Russia GANIL-Caen, France GSI-Darmstadt, Germany Hospital JRJ-Huelva, Spain Heavy Ion Laboratory, Warsaw, Poland ISOLDE-Geneva, Switzerland IPN-Orsay, France KU-Leuven-Belgium LNL-Leñaro, Italy LNS-Catania, Spain UNED-Madrid, Spain Univ. Huelva, Spain Univ. Seville, Spain Univ. UPV-Bilbao, Spain

 \rightarrow OPFN COLLABORATION

