

Proton- and α -induced reaction rates in normal and inverse kinematics

Kerstin Sonnabend

Workshop "ECOS 2012"

Villa Vigoni (Como lake), Italy

June 18th to 21st, 2012

- Astrophysical motivation
- Measurements in normal kinematics
- Measurements in inverse kinematics

Summary and outlook

Solar abundance distribution & nucleosynthesis processes

⁹² Tc	⁹³ Tc	⁹⁴ Tc	⁹⁵ Tc	⁹⁶ Tc	⁹⁷ Tc	⁹⁸ Tc	⁹⁹ Tc	¹⁰⁰ Tc	¹⁰¹ Tc
4.4 m	2.7 h	4.9 h	20 h	4.3 d	4*10 ⁶ a	4*10 ⁶ a	2*10 ⁵ a	15.8 s	14.2 m
⁹¹ Mo	⁹² Mo	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	⁹⁹ Mo	¹⁰⁰ Mo
15.5 m	14.84	4*10 ³ a	9.25	15.92	16.68	9.55	24.13	66 h	9.63
⁹⁰ Nb	⁹¹ Nb	⁹² Nb	⁹³ Nb	⁹⁴ Nb	⁹⁵ Nb	⁹⁶ Nb	⁹⁷ Nb	⁹⁸ Nb	⁹⁹ Nb
14.6 h	680 a	4*10 ⁷ a	100	2*10 ⁴ a	34.97 d	23.4 h	74 m	2.9 s	15 s
⁸⁹ Zr	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr	⁹⁸ Zr
78.4 h	51.45	11.22	17.15	2*10 ⁶ a	17.38	64.0 d	2.80	16.8 h	30.7 s
⁸⁸ Y	⁸⁹ Y	⁹⁰ Y	⁹¹ Y	⁹² Y	⁹³ Y	⁹⁴ Y	⁹⁵ Y	⁹⁶ Y	⁹⁷ Y
106.6 d	100	64.1 h	58.5 d	3.54 h	10.1 h	18.7 m	10.3 m	5.34 s	3.75 s
⁸⁷ Sr	⁸⁸ Sr	⁸⁹ Sr	⁹⁰ Sr	⁹¹ Sr	⁹² Sr	⁹³ Sr	⁹⁴ Sr	⁹⁵ Sr	⁹⁶ Sr
7.00	82.58	50.5 d	28.64 a	9.5 h	2.71 h	7.45 m	74 s	24.4 s	1.0 s

Production of *p* nucleus ⁹²Mo by proton-capture reactions

⁹¹ Ru	⁹² Ru	⁹³ Ru	⁹⁴ Ru	⁹⁵ Ru	⁹⁶ Ru	⁹⁷ Ru	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru
9 s	3.65 m	59.7 s	51.8 m	1.65 h	5.52	2.9 d	1.88	12.7	12.6	17.0	31.6
⁹⁰ Tc	⁹¹ Tc	⁹² Tc	⁹³ Tc	⁹⁴ Tc	⁹⁵ Tc	⁹⁶ Tc	⁹⁷ Tc	⁹⁸ Tc	⁹⁹ Tc	¹⁰⁰ Tc	¹⁰¹ Tc
8.7 s	3 m	4.4 m	2.7 h	4.9 h	20 h	4.3 d	4*10 ⁶ a	4*10 ⁶ a	2*10 ⁵ a	15.8 s	14.2 m
⁸⁹ Mo	⁹⁰ Mo	⁹¹ Mo	⁹² Mo	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	⁹⁹ Mo	¹⁰⁰ Mo
2.15 m	5.7 h	15.5 n	14 84	4*10 ³ a	9.25	15.92	16.68	9.55	24.13	66 h	9.63
⁸⁸ Nb	⁸⁹ Nb	⁹⁰ ND	⁹¹ INb	⁹² Nb	⁹³ Nb	⁹⁴ Nb	⁹⁵ Nb	⁹⁶ Nb	⁹⁷ Nb	⁹⁸ Nb	⁹⁹ Nb
14.3 m	2 h	14.6 📊	68 <mark>)</mark> a	4 10 ⁷ a	100	2*10 ⁴ a	34.97 d	23.4 h	74 m	2.9 s	15 s
⁸⁷ Zr	⁸⁸ Zr	⁸⁹ Zr	⁹⁰ Zr	³¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr	⁹⁸ Zr
1.6 h	83.4 d	78.4 h	51.45	11.22	17.15	2*10 ⁶ a	17.38	64.0 d	2.80	16.8 h	30.7 s

• Temperature range: T = $(1.86 - 3.60) \cdot 10^9$ K, densities: $(1.28 - 2.24) \cdot 10^7$ g/cm³

• Data taken from: M. Kusakabe et al., The Astrophysical Journal 726, 25 (2011)

June 19, 2012

Available data on proton-capture reactions

- ⁹⁰Zr(p,γ)
 - Some data available:
 - E_p = 1.77 6.50 MeV
 C.E. Laird *et al.*, Phys. Rev. C 35, 1265 (1987) in-beam technique
 - E_p = 1.9 5.7 MeV N.A. Roughton *et al.*, At. Data Nucl. Data Tab. 23, 177 (1979) activation technique
 - Measurement @ FRANZ possible at $E_p \approx 2 \text{ MeV}$

- ⁹¹Nb(p,γ)
 - No data available so far: $t_{1/2}(^{91}Nb) = 680 a$
 - Possible approaches:
 - Inverse kinematics @ storage ring with proton target
 - Standard kinematics @ FRANZ with sample of ⁹¹Nb at E_p ≈ 2 MeV

In-beam measurements @ FRANZ

- 4π BaF₂ calorimeter:
 41 crystals, ≈90% total
 efficiency, ≈50% FE peak
 efficiency
- Background reduction:
 - Pulsed beam
 - Sum energy

Comparison of old data on 90 Zr(p, γ)

• Activation significantly higher, different energy dependences

Measurement of ⁹⁰Zr(p,γ) @ FRANZ

- Disentangle contributions of isomers and ground-state
- In-beam measurement:
 high-energy isomer vs.
 (low-energy isomer + ground state) by Q value
- Activation approach:
 low-energy isomer only

Production of ⁹¹Nb sample for ⁹¹Nb(p,γ) @ **FRANZ**

- Irradiation of enriched ⁹²Mo sample
 - Reaction channel (p,2n) dominates for 30 MeV protons
 - Subsequent β decays end in ⁹¹Nb
- Chemical purification and sample preparation
- Measurement at $E_p \approx 2$ MeV at FRANZ

Measure ⁹¹Nb(p,γ) at storage ring (e.g. ESR @ GSI, Germany)

- Detection of ions with in-ring particle detectors
- Two double-sided silicon strip detectors, 4 x 4 cm² each
 - low background
 - high efficiency

Production of p nucleus ⁹²Mo by γ process

⁹¹ Ru	⁹² Ru	⁹³ Ru	⁹⁴ Ru	⁹⁵ Ru	⁹⁶ F-1	⁹⁷ Ru	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ ,211	¹⁰¹ Ru	¹⁰² Ru	
9 s	3.65 m	59.7 s	51.8 m	1.65 h	5.52	2.9 d	1.88	12.7	12.6	17.0	31.6	
⁹⁰ Tc	⁹¹ Tc	⁹² Tc	⁹³ Tc	⁹⁴ Tc	⁹⁵ Tc	⁹⁶ Tc	⁹⁷ Tc	⁹⁸ Tc	⁹⁹ Tc	¹⁰⁰ Tc	¹⁰¹ Tc	
8.7 s	3 m	4.4 m	2.7 h	4.9 N	<u>20 h</u>	4.3 d	4*10 ⁶ a	4*10 ⁶ a	2*10 ⁵ a	15.8 s	14.2 m	
⁸⁹ Mo	⁹⁰ Mo	⁹¹ Mo	92 ₁₀	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	97 M O	98 Mo	⁹⁹ Mo	¹⁰⁰ Mo	
2.15 m	5.7 h	15.5 m	14 84	4*10 ³ a	9.25	15.92	16.68	9.55	24.13	66 h	9.63	
⁸⁸ Nb	⁸⁹ Nb	⁹⁰ Nb	91 Jh	02 Nh	JJNb	⁹⁴ Nb	⁹⁵ Nb	⁹⁶ Nb	⁹⁷ Nb	⁹⁸ Nb	⁹⁹ Nb	
14.3 m	2 h	14.6 h	68)a	4*10 ⁷ a	100	2*10 ⁴ a	34.97 d	23.4 h	74 m	2.9 s	15 s	
⁸⁷ Zr	⁸⁸ Zr	⁸⁹ Zr	90 7 r	⁹¹ 7r	92 7 r	⁹³ Zr	⁹⁴ 7r	⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr	⁹⁸ Zr	
1.6 h	83.4 d	78.4 h	51 45	11.22	17.15	2*10 ⁶ a	17.38	64.0 d	2.80	16.8 h	30.7 s	

- Temperature: $T = 2.5 \cdot 10^9 \text{ K}$
- Data taken from: T. Rauscher, Phys. Rev. C 73, 015804 (2006)

June 19, 2012

Proton- and alpha-induced reaction rates | Kerstin Sonnabend

Coulomb dissociation in inverse kinematics @ LAND/R³B

- CD cross section of Pb(^{93,94}Mo,^{92,93}Mo+n)Pb yields cross section of ^{93,94}Mo(γ,n)^{92,93}Mo
- Kinematically complete measurement needed
- Detection of all reaction products with energy information

Coulomb dissociation @ LAND/R³B, GSI, Germany

June 19, 2012

Proton- and alpha-induced reaction rates | Kerstin Sonnabend

Coulomb dissociation @ LAND/R³B, GSI, Germany

Coulomb dissociation @ LAND/R³B, GSI, Germany

- Production of ^{92}Mo by proton-capture reactions and γ process
- Measurements of key reactions:
 - ⁹⁴Mo(γ ,n)⁹³Mo and ⁹³Mo(γ ,n)⁹²Mo @ LAND/R³B, GSI
 - ⁹⁰Zr(p, γ)⁹¹Nb and ⁹¹Nb(p, γ)⁹²Mo @ FRANZ and ESR, GSI
- Missing reactions:
 - − ${}^{92}Mo(\gamma,p){}^{91}Nb$ → use data on inverse reaction ${}^{91}Nb(p,\gamma)$
 - − 96 Ru(γ,α) 92 Mo → measure inverse reaction 92 Mo(α,γ) in standard and/or inverse kinematics
- \rightarrow Determine dominant production mechanism and astrophysical site

- Find key reactions to probe astrophysical network or model calculations → networking activity ATHENA
- Beam diagnostics and beam transport close to the space charge limit
- Detection systems capable for highest count rates
- Data processing, storage, and analysis
- Development of high power targets
- Development of efficient production mechanism for targets

- Experimental Astrophysics, Goethe-University Frankfurt: S. Altstadt, C. Beinrucker, M. Berger, J. Bonilla, P. Erbacher, O. Ershova, M. Gilbert, J. Glorius, K. Göbel, T. Heftrich, A. Koloczek, B. Mei, S. Kräckmann, R. Krämer, K. Landwehr, C. Langer, O. Meusel, M. Mikorski, R. Plag, M. Pohl, A. Rastrepina, R. Reifarth, C. Ritter, S. Schmidt, Z. Slavkovská, B. Thomas, T. Thomas, and M. Weigand
- E062 collaboration (⁹⁶Ru(p,γ) @ ESR, GSI)
- **S295** collaboration (^{92,93,94,100}Mo(γ,n) @ LAND/R³B, GSI)
- D. Schumann, PSI, Villingen, Switzerland
- M. Wiescher, University of Notre Dame, Indiana, U.S.A.