# **Solution**

## Spectroscopy of heavy and super heavy elements, perspectives with stable (high intensity) ion beams

THEISEN Christophe CEA Saclay

### Introduction

- Nuclei with extreme mass and charge
- Structure :
  - Magic numbers (if any ?); Magnitude of shell effects; Evolution with A&Z
  - Deformed nuclei and collective properties : magic deformed numbers; Energy of sp decreasing with deformation (high-j shell); K-isomers
- Production : best method(s) to create nuclei; reach beta-stable nuclei and beyond





102 No

2012 06 19

#### Status, problems and outline

- Impressive progresses since few years but :
  - Still little known about structure. Almost nothing above Z=104
  - Production rates !!!
  - Production techniques (how to reach beta-stable and neutron rich nuclei ?) : reaction mechanism + best beams !
  - Selection and detection techniques (a less severe problem ?)
- Outline
  - VHE status
  - Why do we need highest beam intensities
  - LINAG and S3
  - Selected physics case
  - New possible production and experimental techniques
  - Prompt spectroscopy
  - Other facilities in Europe
  - Conclusions

**Excited states : status** 



#### **Cross sections**





## Why do we need highest beam intensities ?

Basically two experimental techniques :

- Prompt spectro. "high intensity" but not that much because of prompt detection limitation. Beam intensity is not (yet) the bottleneck (see e.g. <sup>246</sup>Fm@JYFL  $\sigma$  ~ 11 nb; I ~70 pnA)

- Decay spectro. : as much beam as possible... within the limit of separator/spectrometer and detection. Note : except in K-isomer studies, we must have a decaying (alpha) nucleus + need to produce mother nucleus (Z+2)

Spectrometer/separator :

- transmission as large as possible
- rejection as large as possible

- detection <u>efficiency</u> + need relevant measurement ! (alpha, beta, gamma, fission,  $t_{1/2}$ , electromagnetic moments, ...)

Transmission and detection can always be improved ... but 100 % limit cannot be by passed

- $\rightarrow$  need the highest beam intensities
- $\rightarrow$  consequences on the spectrometer design ! (rejection, targets, ...)

#### High beam intensities and SHE : an old story

- First identification of Md isotope by A. Ghiorso in 1955
  - <sup>253</sup>Es( $\alpha$ ,n)<sup>256</sup>Md Cyclotron beam intensity ~ 10 pµA
- Chemical identification

Irfu



#### K isomerism in <sup>254</sup>No



8

8-: v[613]7/2+8 v[734]9/2-

#### K isomerism in <sup>256</sup>Rf



A.P. Robinson *et al.* PRC 83 (2011) 064311 FMA@ANL Only one isomer 17(5) μs 4qp ?

Level scheme and structure assignment tentative Experimental differences difficult to reconcile

#### S3 and LINAG



#### Linag beam intensities



#### **S**3



Example : Lv Z=116



 $\rightarrow$  40 implantations/week  $\rightarrow$  M/ $\Delta$ M= 374 FWHM

#### **Focal plane detection**

- ToF upstream detectors
- DSSSD Implantation
  - Threshold 100 keV or below
  - Resolution 20 keV for alphas
- Si Box for conversion electrons and escaping
  - 0<E<10 MeV range</li>
- Ge detectors
  - 0<E<1.5 MeV range
  - Threshold 15 keV.
  - Efficiency as large as possible
- Electronics : small Si dead-time needed











Irfu

#### S3 in real





Oct. 2011



Dec. 2011

Mai. 2012

#### S3 first day experiments : K isomers in <sup>254</sup>No, <sup>256</sup>Rf





- No isomers known in Sg, Hs isotopes
- Experiments place stringent demands on focal plane set-up
- High-statistics allows better assignments of multipolarities, etc
- High discrepancies with theory (e.g. location of high-/ states)

#### K isomerism in <sup>254</sup>No



8-: v[613]7/2+8 v[734]9/2-

#### K isomerism in <sup>256</sup>Rf



A.P. Robinson *et al.* PRC 83 (2011) 064311 FMA@ANL Only one isomer 17(5) μs 4qp ?

Level scheme and structure assignment tentative Experimental differences difficult to reconcile



 $^{208}$ Pb( $^{48}$ Ca,2n) $^{254}$ No  $\sigma$  = 2µb

Target thickness 500 µg/cm<sup>2</sup> S3 transmission 50%

Beam <sup>48</sup>Ca 2 pµA (conservative)

 $\rightarrow$  1000 residues / minutes  $\rightarrow$  1.0 10<sup>7</sup> residues in 21 UTs (9.0 10<sup>5</sup> at LBNL) <sup>208</sup>Pb(<sup>50</sup>Ti,2n)<sup>256</sup>Rf σ = 17 nb

Target thickness 500 µg/cm<sup>2</sup> S3 transmission 50%

Beam <sup>50</sup>Ti 2 pµA

 $\rightarrow$  9.2 residues / minutes  $\rightarrow$  90000 residues in 21 UTs (5400 at LBNL)

#### After Day 1 : reactions with U targets



J.M.Gates et al., PRC 77, 034603 (2008)

K.E.Gregorich et al., PRC 74, 044611 (2006)

#### Toward <sup>270</sup>Hs doubly magic deformed

- K-isomers; single particles from spectroscopy of odd nuclei
- Need highest production; need RFQ 1/6



#### LINAG et S3



#### The limits of fusion-evaporation reactions



2012 06 19

### Actinide collisions & TDHF

C. Simenel, C. Golabek and D.J. Kedziora Eur. Phys. J. web of conference 17, 09002 (2011).



TDHF probability distribution for the heavy fragment produced in  $^{232}$ Th+ $^{250}$ Cf central collision in the *xy* configuration.

Cross-sections needed !!!

Irfu







#### **Other techniques with S3**

**Solution** 



• transfer reaction ?

#### Less highest intensity : prompt γ-ray spectroscopy

- Prompt gamma-ray spectroscopy
- Max ~ few 10 pnA already achievable
- Need digital electronics
- Need for a zero degree separator with room around target
   RITU + SAGE
  - VAMOS Gas-Filled, Agata +/- Exogam 2



Irfu

C. Schmitt *et al.*, NIMA 621 (2010) 558 95% transmission for <sup>40</sup>Ca+<sup>150</sup>Sm



#### 40 Agata crystals+ 8 Exo Clover $\epsilon$ > 20 $_{2}$ %

### **Other projects in Europe : Dubna SHE**

**ACCELERATORS** 

Irfu

| Beam parameters                              | HI-Physics<br>U-400R                        | SHE-Factory<br>DC-280 |
|----------------------------------------------|---------------------------------------------|-----------------------|
| Projectiles                                  | Stable and<br>RIB (T <sub>1/2</sub> > 0.1s) | Stable<br>only        |
| Projectile masses                            | 4He – 238U                                  | 40Ar – 86Kr           |
| Energy range                                 | 0.5 – 27.0 MeV/n                            | 5 – 8 MeV/n           |
| Energy resolution                            | 0.5%                                        | 1.5%                  |
| Beam intensity (for 48Ca)                    | 2.5 pμA                                     | 10-20 pµA             |
| SHE-research program                         | ≤30%                                        | ~100%                 |
| Registered decay chains of SHN<br>(per year) | 120 (now <mark>30</mark> )                  | 3000 - 5000           |
| State of readiness                           | 75%                                         | In course of design   |

#### From Yuri Oganessian, FUSHE 2012



Yuri Oganessian. "Synthesis of SH-nuclei" FUSHE 2012, May14, 2012, Weilrod, Germany

#### **Other projects in Europe : GSI**



|                                                                                                          | <u>Luminosity gain</u>        |
|----------------------------------------------------------------------------------------------------------|-------------------------------|
| <ul> <li>New RFQ: Duty cycle 25 -&gt; 40%</li> </ul>                                                     | x 1.6                         |
| <ul> <li>New MS-ECRIS: higher beam currents and</li> </ul>                                               |                               |
| <ul> <li>LEBT for new MS-ECRIS at HLI</li> </ul>                                                         | x 5.0                         |
| <ul> <li>cw-linac         <ul> <li>100% duty cycle</li> <li>independent operation</li> </ul> </li> </ul> | x 2.5<br><u>x 2.0</u><br>x 40 |





#### Conclusions

- Very active topics
  New accelerators
  - New accelerators / spectrometers : great opportunities for the field
  - Perspectives with Linag + S3 and around
  - High beam intensities : great results expected in a near future but
    - Still need to produce differently and better : reaction mechanisms, multinucleon transfer
    - Need LINAG with RFQ 1/6 to be competitive
  - Challenges
    - Highest beam intensities : targets (actinides), rejection, power dissipation
    - "Total" spectroscopy : efficiency, resolution, dead time
    - Reliability
    - Prompt spectroscopy with highest beam intensity (Agata, Exogam2, SAGE, ...)
    - Production techniques : multinucleon transfer around zero degree ?
    - Radioactive beams (chances in a decent future ?)
    - Theory