Yrast spectroscopy of neutron-rich nuclei – present status and perspectives with high intensity stable beams

Bogdan Fornal

Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland

ECOS 2012: "Advances and challenges in nuclear physics with high intensity stable beams", Villa Vigoni, Como Lake, Italy on June 18-21, 2012

Outline

- Deep-inelastic heavy-ion reactions
 - short history

- product yield distribution assessed with different techniques
- Accessing yrast structures in neutron-rich nuclei around ⁴⁸Ca successful combination of the thick-target and thin-target methods
- New yrast structures in nuclei located around ²⁰⁸Pb
- Realistic V_{low-k} shell model calculations in the vicinity of ²⁰⁸Pb and their predictive power
- Perspectives for discrete yrast gamma-ray spectroscopy "east" and "southeast" of ⁴⁸Ca or ²⁰⁸Pb with high intensity stable beams

DEEP-INELASTIC HEAVY-ION COLLISIONS

Wilczynski plot

³²S + ⁵⁸Ni, E_{beam} = 143 MeV, XTU Tandem at LNL Legnaro (1985)

G. Viesti, B. Fornal,
F. Gramegna, G. Prete *et al.*,
Z. Phys. A 324, 161 (1986)

Gamma rays from deep-inelastic reaction products

Discrete gamma-ray spectroscopy with deep-inelastic heavy-ion collisions

R. Broda *et al.*,
Phys. Lett. B 251, 245 (1990)

MeV

 -12^{+}

Argonne-Notre Dame Array (16 HPGe+ 50 BGO)

It was soon realized that deep-inelastic heavy-ion reactions could be an ideal tool to study the structure of neutron-rich nuclei Deep-inelastic heavy-ion reactions – a tool for discrete gamma-ray spectroscopy of neutron-rich nuclei

thick target $\gamma - \gamma$ coincidences

EUROBALL, EXOGAM

γ-ray Ge array +
+ magnetic spectr.

e.g., CLARA+PRISMA, EXOGAM+VAMOS

Detailed product yield distribution measured in deep-inelastic ⁶⁴Ni + ²⁰⁸Pb reaction with the thick-target technique

Nuclei around ⁸²Se produced the reaction ⁸²Se (505 MeV) + ²³⁸U and investigated with CLARA+PRISMA

G. De Angelis, *Prog.Part.Nucl.Phys.* 59, 409 (2007)

(courtesy of Giacomo de Angelis)

Neutron Number

fission of ²³⁸U

Comparison of product yield distributions around the projectile ⁶⁴Ni measured with thick target and thin target techniques

A. Gadea *et al.*, J.Phys G31, S1443 (2005)

The nuclei around ⁴⁸Ca produced in deep-inelastic reactions of ⁴⁸Ca (330 MeV) on ²³⁸U and investigated with GAMMASPHERE and CLARA+PRISMA

Results on the neutron-rich Ti isotopes from the ⁴⁸Ca (330 MeV) + ²³⁸U reaction studied with GAMMASPHERE in a thick target experiment

no "starting points"

2

V 54 49,8 s

53

52 43 5.0

51

V 53 1,6 m

52

12,4 s

Ca 50

49

V 51

Sc 49 57,2 m

48Ca

Sc 50 1,7 m

48

V 50 0.250

Sc 48 43,67 h

Ca 47

K 46

Ar 45 21,5 s

1025.376

Sc 47 3,35 d

K 45 17,8 m

Ar 44 11,87 m

K 44 22.2 m

Ar 43 5,37 m

V 56 230 ms

55

Ca 53 90 ms

Ar 51

V 57 323 ms

56

120 ms

K 53 30 ms K 54 10 ms

V 55 6,5 s

54

Cr

Ti

Ca

Ar

¥ 47 32.6 m

Ar 42 33 a

- 6.6

GAMMASPHERE

⁴⁸Ca (330 MeV) + ²³⁸U at LNL Legnaro with **PRISMA+CLARA**

⁵²Sc

Results on the most neutron-rich nuclei from the ⁴⁸Ca (330 MeV) + ²³⁸U reaction studied with GAMMASPHERE and CLARA+PRISMA

⁵²Sc

Data on ⁵¹Ca from EXOGAM+VAMOS at GANIL ²³⁸U (1310 MeV) + ⁴⁸Ca

The nuclei around ²⁰⁸Pb, <u>produced in deep-inelastic reactions</u> in which we have identified yrast structures by using $\gamma - \gamma - \gamma$ coincidence thick-target technique with GAMMASPHERE

Yrast structure of ²⁰³Hg identified by using the ⁴⁸Ca+²³⁸U reaction and gammacoincidence thick target technique with GAMMASPHERE

Yrast structure of ²⁰⁶Bi identified by using the ⁷⁶Ge+²⁰⁸Pb reaction and gammacoincidence thick target technique with GAMMASPHERE

Angular distribution of gamma rays fom the ²⁰⁶Bi product

Realistic shell model calculations of YRAST STATES using the V_{low-k} approach – residual n-n interaction derived from <u>the free nucleon–nucleon potential</u>

To get the V_{low-k} effective interaction we used: <u>Computational Environment for Nuclear</u> <u>Structure (CENS)</u> *CD-Bonn potential,* Λ =2.2 fm⁻¹, model spaces: (7-50-82, N-82-126), (7-50-

model spaces: (Z=50-82, N=82-126), (Z=50-82, N=126-184)

For shell-model calculations we used: computer code OXBASH,

s.p.s. energies from experiment;

²⁰⁸Pb

CLARA

Gamma-ray array coupled to a magnetic spectrometer: γ-product coincidences

G-Ray Array

Standalone gamma-ray array $\gamma - \gamma - \gamma$ coincidences

Assuming that an individual Ge detector of a new Ge ARRAY covers the same solid angle as in CLARA, for thin-target experiments with such Ge ARRAY (digital electronics) coupled to a SPECTROMETER the beam intensity can be increased by ~50 Assuming that an individual Ge detector of a new Ge ARRAY covers the same solid angle as in GAMMASPHERE, in thick-target experiments with such Ge ARRAY (digital electronics) the beam intensity can be increased by ~5 Gamma-ray array coupled to a magnetic spectrometer: γ-product coincidences

beam intensity

~50

Gain (for singles) from the increased AGATA efficiency ~10

Overall improvement for γ -p ~500

Standalone gamma-ray array $\gamma - \gamma - \gamma$ coincidences

Gain from the increased beam intensity

Gain (for triple γ coincidences) from the increased AGATA efficiency ~64

Overall improvement for $\gamma - \gamma - \gamma$

Conclusions and Outlook

- Discrete in-beam gamma-ray spectroscopy with deep-inelastic reactions turned out to be efficient in elucidating yrast structures in many neutronrich nuclei.
- Combination of thick-taget (standalone γ-ray array: GASP, EUROBALL, GAMMAPSHERE) and thin-target (γ-ray array coupled to a magnetic spectrometer: CLARA+PRISMA, EXOGAM+VAMOS) techniques were particularly successful in identifying yrast structures in weakly populated neutron-rich species.

Discrete in-beam gamma-ray spectroscopy of deep-inelastic reactions products will benefit from high intensity beams, although only beams with moderately higher intensity will be of use.

Experiments using these higher intensity beams and modern tracking germanium arrays should extend the in-beam spectroscopy toward more neutro-rich nuclei by at least 3 mass units.

Collaborators

R. Broda, N. Cieplicka, W. Krolas, K.H. Maier, T. Pawlat, B. Szpak, J. Wrzesinski, B. Fornal

R.V.F. Janssens, S. Zhu, M.P. Carpenter, D. Seweryniak et al.

G. Lane, G. Dracoulis et al.

P. Mantica, A. Gade, D.-C. Dinca, B.A. Brown et al.

M. Honma T. Otsuka IFJ PAN Krakow, Poland

ANL Argonne, USA

ANU Canberra, Australia

MSU East Lensing, USA

University of Aizu, Japan University of Tokyo, Japan

L. Corradi, G. de Angelis, A. Gadea, E. Farnea, S. Lenzi, S.Lunardi, N. Marginean, J. J. Valiente-Dobon, C. Ur et al.

PRISMA-CLARA group, Legnaro-Padova