

Charged particle detectors for high intensity beams: some thoughts and open problems

<u>G. Pasquali</u> <u>pasquali@fi.infn.it</u> <u>University of Florence & INFN-Sezione di Firenze</u>

ECOS 2012 18-21 June 2012

Outline

• Introduction

- Applications of Charged Particle Detectors (CPD)
- Basic detection principles
- Particle Identification
 - Delta E-E technique
 - Pulse Shape Analysis in Silicon
- Limits to detector performance
 - Radiation Damage in Silicon
 - Multiple hits and Pile-Up
 - Noise, power consumption and their interplay with noise and pile-up, Segmentation
- Study case
 - Ancillary detector for LCP's for new generation gamma arrays
- Conclusions

Charged part. detection basics

ECOS 2012 18-21 June 2012

- Detection via energy loss in an absorber
- Absorbed energy => current/charge signal
- Signal => Timing/Energy/Type information

Sensor: active volume+electrodes

ECOS 2012 18-21 June 2012

CPD: Applications

- Ancillary detectors for gamma arrays
- Large solid angle telescope arrays ullet
- Focal plane detectors for spectrometers

G. Pasquali – Charges

CPD: Sensor material

- Gas detectors (IC, MWPC, PPAC, etc.)
- Semiconductor detectors (Si)
- Scintillators (CsI(Tl), plastics, etc..)
- Conversion foils + electron mult (e.g. MCP)^{Sensor}

CPD: Sensor material

- Gas detectors (IC, MWPC, PPAC, etc.)
- Semiconductor detectors (Si)
- Scintillators (CsI(Tl), plastics, etc..)

Gas

ion

electron

Conversion foils + electron mult (e.g. MCP)

Scintillator

photon (visible)

Main interaction: electrostatic with atomic electrons (ionization, excitation).

<u>(հ)</u>

e () e () e ()

Semiconductor

electron

hole

ECOS 2012 18-21 June 2012

Œ

charged

particle

CPD: Sensor material

- Gas detectors (IC, MWPC, PPAC, etc.)
- Semiconductor detectors (Si)
- Scintillators (CsI(Tl), plastics, etc..)
- Conversion foils + electron mult (e.g. MCP)

Main interaction: electrostatic with atomic electrons (ionization, excitation).

ECOS 2012 18-21 June 2012

Main interaction: electrostatic with atomic electrons (ionization, excitation).

ECOS 2012 18-21 June 2012

Particle Identification

ECOS 2012 18-21 June 2012

VeV)

Energy

1

2000

Si2 Energy (MeV)

Carboni et al. NIM A 664 (2012) 251

ECOS 2012 18-21 June 2012

G. Pasquali – Charged Particles Detectors

 ${}^{1000}\!E_R(Si2)$

1000

0

Particle ID: ∆E-E and PID

ECOS 2012 18-21 June 2012

Particle ID: <u>∆</u>E-E and PID

Particles stopped in first detector: no identification!

R NTIN.

ENTIN

Limiting and degrading factors

ECOS 2012 18-21 June 2012

Sensor: Energy deposition

Main interaction: electrostatic with atomic electrons (ionization, excitation).

However: NIEL also possible

- Non Ionizing Energy Loss (NIEL):
- Rutherford scattering with atomic nuclei
- Nuclear reactions with atomic nuclei

Radiation Damage in lattices (e.g. silicon)

Sensor: Radiation Damage(RD)

Non Ionizing Energy Loss (NIEL) also possible:

- Rutherford scattering with atomic nuclei
- Nuclear reactions with atomic nuclei

Effects of RD in Si detectors vs. fluence (ions/cm²)

NFN

Effects of RD in Si detectors vs. fluence

Effects of RD in Si detectors vs. fluence (ions/cm²)

RENTINA

Fluence (counts/cm²)

Sensor RD: collection efficiency

Effects of RD in Si detectors vs. fluence (ions/cm²)

Fluence (counts/cm²) $\times 10^6$

Sensor RD: collection time

e infn

Effects of RD in Si detectors vs. fluence (ions/cm²)

Multiple hits and Pile-Up

Multiple Hit: "true" coincidence. Two particles from the same projectile-target interaction hit the same sensor.

Sensor2

Pile-Up: a "chance" coincidence. Particles from two distinct projectile-target interactions hit the same sensor.

ECOS 2012 18-21 June 2012

Sensor: Multiple Hits

Multiple Hit

Probability: depends on sensor detection efficiency (e.g. Solid angle), event multiplicity...<u>does not</u> <u>change with event rate (i.e. Beam intensity)</u>

Time scales, mult.hits, pile-up

Times involved:

- Time of Flight difference among particles (from one to tens ns depending on velocity and distance)
- Charge collection time (e.g. 10-100ns in Si)
- FEE resolving time (e.g. Shaping time constant, integration gate duration,...)

optimise SNR => BW limit in FEE => FEE time usually dominates the resolving time

Pile-Up: a "chance" coincidence. Particles from two distinct projectile-target interactions hit the same sensor. $P_{pu} = (1 - e^{-RT})^{-RT}$

Preamp

Detector

ECOS 2012 18-21 June 2012

FEE: How-to deal w/Pile-Up

 $P_{pu} = (1 - e^{-RT}) \approx RT$ if RT << 1

Pile – Up events/s = $R \times (RT) \propto R^2$

 $P_{pu} = (1 - e^{-RT}) \approx RT$ if RT << 1

Pile – Up events/s = $R \times (RT) \propto R^2$

Once pile-up has occurred we can: 1) ignore it (if we know they are few) 2) recognize and discard 3) recognize and disentagle (DSP methods)

 $P_{pu} = (1 - e^{-RT}) \approx RT$ if RT << 1

Pile – Up events/s = $R \times (RT) \propto R^2$

Once pile-up has occurred we can: 1) ignore it (if we know they are few) 2) recognize and discard

3) recognize and disentagle (DSP methods)

To reduce pile-up we can: 1) shorten sensor times (collection, shaping) 2) increase sensor-target distance 3) reduce sensor area

 $P_{pu} = (1 - e^{-RT}) \approx RT$ if RT << 1

Pile – Up events/s = $R \times (RT) \propto R^2$

Once pile-up has occurred we can: 1) ignore it (if we know they are few) 2) recognize and discard

3) recognize and disentagle (DSP methods)

To reduce pile-up we can: 1) shorten sensor times (collection, shaping) 2) increase sensor-target distance 3) reduce sensor area

FEE: Electronic noise

Charge signal variance Q_n^2 (measured, e.g., in squared Equivalent Noise Charge, ENC²)

ENC: input charge giving an output voltage signal equal to the rms voltage noise.

ECOS 2012 18-21 June 2012

Charge signal variance Q_n^2 (measured, e.g., in squared Equivalent Noise Charge, ENC²)

ENC: input charge giving an output voltage signal equal to the rms voltage noise.

ECOS 2012 18-21 June 2012

 T_s : measure time (e.g. CR - RC shaper: $T_s = RC$) T: absolute temperature

Long T_s => current noise dominates Short T_s =>voltage noise dominates

 T_s : measure time (e.g. CR – RC shaper: $T_s = RC$)

Long $T_s =>$ current noise dominates Short $T_s =>$ voltage noise dominates

ECOS 2012 18-21 June 2012

ECOS 2012 18-21 June 2012

 $Q_n^2 = i_n^2 \mathcal{F}_i T_s + e_n^2 \mathcal{F}_v \frac{C_{in}^2}{T_s}$

 i_n^2 $i_n^2 \approx 2 e I_D$ $I_D(T) \propto T^2 e^{-E/k_B T}$ • increases linearly with leakage current leakage current increases with damage

 i_n^2 $i_n^2 \approx 2 \left(I_D \right)$ $I_D(T) \propto T^2 e^{-E/k_B T}$ • increases linearly with leakage current • leakage current increases with damage

- $i_n^2 \qquad i_n^2 pprox 2 e I_D \qquad I_D(T) \propto T^2 e^{-E/k_B T}$
- increases linearly with leakage current
 leakage current increases with damage

$$\boldsymbol{e_n^2} \qquad e_n^2 \approx rac{2.7 \, k_B \, T}{g_m} \propto rac{2.7 \, k_B \, T}{I_{FET}}$$

- increases w/ decreasing input transistor transconductance => decreasing power
- "amplified" by input capacitance squared

- i_n^2 $i_n^2 \approx 2 e I_D$ $I_D(T) \propto T^2 e^{-E/k_B T}$ • increases linearly with leakage current
- Increases meany with leakage current
 Ieakage current increases with damage
- e_n^2 $e_n^2 \approx \frac{2.7 k_B T}{g_m} \propto \frac{2.7 k_B T}{I_{FET}}$ • increases w/ decreasing input transistor transconductance => decreasing power • "amplified" by square on input capacitance

increases linearly with leakage current
leakage current increases with damage

$$\boldsymbol{e_n^2} \approx rac{2.7 \, k_B T}{g_m} \propto rac{2.7 \, k_B T}{I_{FET}}$$

- increases w/ decreasing input transistor transconductance => decreasing power
- "amplified" by input capacitance squared

Both increase with temperature!

ECOS 2012 18-21 June 2012

FEE: Noise with S-ADC

INFN

FEE: Noise with S-ADC

I N F N

ENOB=effective number of bits

ECOS 2012 18-21 June 2012

Interplay

ECOS 2012 18-21 June 2012

A: Move sensor away =>reduces pile-up prob. B: Reduce sensor area => also reduces pile-up

However for constant SNR:

$$Q_n^2 = i_n^2 \mathcal{F}_i T_s + e_n^2 \mathcal{F}_v \frac{C_{in}^2}{T_s} \qquad e_n^2 \approx \frac{2.7 k_B T}{g_m} \propto \frac{2.7 k_B T}{I_{FET}}$$

A: Move sensor away =>reduces pile-up prob. B: Reduce sensor area => also reduces pile-up

However for constant SNR:

$$Q_n^2 = i_n^2 \mathcal{F}_i T_s + e_n^2 \mathcal{F}_v \frac{C_{in}^2}{T_s} \qquad e_n^2 \approx \frac{2.7 k_B T}{g_m} \propto \frac{2.7 k_B T}{I_{FET}}$$

Option A=> solid angle Ω divided by n=> channel# times n (@same power per channel) => increase power n times

A: Move sensor away =>reduces pile-up prob. B: Reduce sensor area => also reduces pile-up

However for constant SNR:

$$Q_n^2 = i_n^2 \mathcal{F}_i T_s + e_n^2 \mathcal{F}_v \frac{C_{in}^2}{T_s} \qquad e_n^2 \approx \frac{2.7 k_B T}{g_m} \propto \frac{2.7 k_B T}{I_{FET}}$$

Option A=> solid angle Ω divided by n=> channel# times n (@same power per channel) => increase power n times Option B=> Ω divided by n => channel# times n... however:

A: Move sensor away =>reduces pile-up prob. B: Reduce sensor area => also reduces pile-up

However for constant SNR:

$$Q_n^2 = i_n^2 \mathcal{F}_i T_s + e_n^2 \mathcal{F}_v \underbrace{\frac{C_{in}^2}{T_s}}_{T_s} \qquad e_n^2 \approx \frac{2.7 k_B T}{g_m} \propto \frac{2.7 k_B T}{I_{FET}}$$

Option A=> solid angle Ω divided by n=> channel# times n (@same power per channel) => increase power n times Option B=> Ω divided by n => channel# times n...

however:

capacity divided by n => can scale down FET current (or shaping time Ts) by n²

e.g. Current down by n²=>total power scaled down by n (...well, not exactly so...there is a fixed amount of digital power per channel...) ECOS 2012 18-21 June 2012 G. Pasquali – Charged Particles Detectors

A study case

ECOS 2012 18-21 June 2012

A study case: LCP ancillary detector

Inspired by D.Mengoni work for TRACE (TRacking Array for light Charged Particle Ejectiles)

Basic requirements:

- 1) particle identification
- 2) detection efficiency
- 3) granularity
- 4) transparency to gamma's
- 5) Energy resolution about 50keV FWHM for ²⁴¹Am
- 6) Timing resolution 500ps FWHM
- 7) dynamic range (energy) 0.2-300MeV
- 8) high rates

A study case: LCP ancillary detector

...a few possible choices

Basic requirements:

- 1) particle identification
- 2) detection efficiency
- 3) granularity
- 4) transparency to gamma's
- 5) Energy resolution about 50keV FWHM for ²⁴¹Am
- 6) Timing resolution 500ps FWHM
- 7) dynamic range (energy) 0.2-300MeV
- 8) high rates!

3)+4)+5)=>Silicon pad or strip detector

- 1)=>Two Si layers for $\triangle E-E$, reverse mount for PSA
- 2)=>Many wafers (and FEE channels) needed

5)+8)=>cooling to reduce noise => short T_s

<u>A study case: LCP ancillary detector</u> ...some numbers

Expected rate per sensor (4 mm x 4 mm) 20kHz if

- 100pnA beam
- LCP multiplicity 6
- Target A=100, 1 mg/cm²

Pile-Up probability: 2% for 20kHz with $T_s = 1 \mu s$

Radiation Damage:

 Fluence per day at 20kHz 1.1x10¹⁰ cm⁻²...PSA tests mandatory (distinguish drift from resolution worsening)

Conclusions

INFN

- Si detectors with small strip or pixels (mm) good candidates for large solid angle arrays
- Segmentation advantages:
 - PSA needs uniform doping. Easier to obtain on smaller areas (lower cost=>more spares, cfr. RD)
 - Better angular resolution
 - Lower pile-up probability (short shaping time)
 - Better noise and radiation hardness
- Huge amount of RD studies from HEP, though our constraints can differ (dedicated studies)
- Many open questions, we will need: experimental R&D work, detector simulations and...ingenuity!

Some open problems

Spurious coincidences (particles from distinct P+T within resolving time) hard to avoid or reduce (e.g. pulsed beams with many particles/bunch!). What's the resolving time? Rate in target ~4 MHz, one every 250ns. Make decisions fast!

- Reliable measurement of total Z of the event could be of great help (ancillary+spectrometer).
 However: PSA needed for low PID thresholds...
- Rad. Damage robustness of PSA and ΔE -E identification for LCP must be tested
- Rare events => high background...how to select? Trigger issues similar to HEP? Rate in target ~4 MHz, one every 250ns. Make decisions fast!
- ASIC electronics preferred (many channels in small space)...but performance of ASIC electronics in terms of PSA identification must be checked!
- limit of the present digitizing ACQ on market is anyway few 10kHz. At 100pnA we're there already.
 ECOS 2012 18-21 June 2012
 G. Pasquali – Charged Particles Detectors

Thanks!

ECOS 2012 18-21 June 2012

Some ASIC specific issues

 relatively low bias voltage=>need bigger feedback capacity for the same dynamic energy range with respect to discrete of higher bias voltage

- big capacity => occupy large area on ASIC chip

- low voltage noise needs high transconductance, i.e. Large JFET bias current => needs large area for JFET

- taking out preamp signal for digitizers problematic

 slow (sequential) readout. Sparse readout faster though it needs some timing logic (CFD,...). Dead time after sample/hold.

CPD: Arrays of Cells

Large solid angle coverage => Efficiency for complete events (multiplicitv measurement, etc)

e.g. Ancillary light charged particles (LCP) detector for gamma detection arrays

EUCLIDES (LNL) G. Pasquali – Charged Particles Detectors ~ year 2000

ECOS 2012 18-21 June 2012

	Scintillator	Gas	Solid State
nergy/carrier	100-500 eV	20-40 eV	~3 eV
nergy resol. @ 1 MeV	100-500 keV	20-50 keV	1-10 keV
ming resol. @ 1 MeV	~0.03-1 ns	0.1-1 ns	0.1-2 ns
etectable particle charge	1-6	>20	all
ulse shape	У	n	y/n
rea limits	100 cm ²	m²	Cm ²
asy to handle	У	y/n	У
ost/cm ²	medium	medium	high
nergy resol. @ 1 MeV ming resol. @ 1 MeV etectable particle charge ulse shape rea limits asy to handle ost/cm ²	100-500 keV ~0.03-1 ns 1-6 y 100 cm ² y medium	20-50 keV 0.1-1 ns >20 n m ² y/n medium	1-10 keV 0.1-2 ns all y/n cm ² y high

ECOS 2012 18-21 June 2012

Particle ID: Pulse Shape Ident. in Silicon

Particle ID: Pulse Shape Ident. in Silicon

Pausch image rotated and flipped for easier comparison.

Particle ID: PSA and Rad. Damage

Particle ID: PSA and Channeling

INFN

ECOS 2012 18-21 June 2012

STUDIORIA

SENTING.

Particle ID: PSA and Doping Uniformity

ECOS 2012 18-21 June 2012

Particle ID: <u>AE-E and Channeling</u>

INFN

STUDIORIA

ENTINA

Open questions

- ASIC or discrete electronics?
- charge or current preamps?

- how to recognize event mixing due to finite ToF? (slowest particles of n-th interaction detected at the same time as fastest particles of (n+1)-st interaction.