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Charged part. detection basics
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CPD: Detection basics
● Detection via energy loss in an absorber
● Absorbed energy => current/charge signal
● Signal => Timing/Energy/Type information

        

Sensor: active volume+electrodes

A basic cell...
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CPD: Applications
● Ancillary detectors for gamma arrays
● Large solid angle telescope arrays
● Focal plane detectors for spectrometers
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CPD: Sensor material
● Gas detectors (IC, MWPC, PPAC, etc.)

● Semiconductor detectors (Si)

● Scintillators (CsI(Tl), plastics, etc..)

● Conversion foils + electron mult (e.g. MCP)
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CPD: Sensor material

Main interaction: electrostatic with atomic electrons 
(ionization, excitation).

light-current
Converter (PMT, 
PD)

● Gas detectors (IC, MWPC, PPAC, etc.)

● Semiconductor detectors (Si)

● Scintillators (CsI(Tl), plastics, etc..)

● Conversion foils + electron mult (e.g. MCP)
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CPD: Sensor material

Main interaction: electrostatic with atomic electrons 
(ionization, excitation).

● Gas detectors (IC, MWPC, PPAC, etc.)

● Semiconductor detectors (Si)
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Particle Identification
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Particle ID: ∆E-E telescope
¢E ER

particle

Carboni et al. NIM A 664 (2012) 251

Si1
300m

Si2
300m
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Particle ID: ∆E-E and PID 
¢E ER

particle

Si1
300m

Si2
300m

Carboni et al. NIM A 664 (2012) 251
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Particle ID: ∆E-E and PID 
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Particle ID: ∆E-E and PID 

¢E ER

particle

Si1
300m

Si2
300m

¢E ER

particle

Si1
300m

Si2
300m

Particles stopped in first detector: no identification!
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(Z1, A1)

(Z2, A2)

E1 = E2        Z1 < Z2 
v(t)

p++n

p++n

Particle ID: Pulse Shape Ident. in Silicon
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Particle ID: Pulse Shape Ident. in Silicon
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(Z1, A1)

Si
300m (Z2, A2)
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v(t)

t

v(t)

p++n

p++n

Particle ID: Pulse Shape Ident. in Silicon
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(Z1, A1)

Si
300m (Z2, A2)

E1 = E2        Z1 < Z2 

v(t)

t

v(t)

p++n

p++n

Bardelli et al. NIM A 654 (2011) 272

Particle ID: Pulse Shape Ident. in Silicon
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Limiting and degrading factors
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Sensor: Energy deposition

Main interaction: electrostatic with atomic
electrons (ionization, excitation).

Non Ionizing Energy Loss (NIEL):
● Rutherford scattering with atomic nuclei
● Nuclear reactions with atomic nuclei

Radiation Damage in lattices (e.g. silicon)

However: NIEL also possible
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Sensor: Radiation Damage(RD)

Non Ionizing Energy Loss (NIEL) also 
possible:
● Rutherford scattering with atomic nuclei
● Nuclear reactions with atomic nuclei

Interstitial

Vacancy }Frenkel 
Pair

Recoil atoms, in turn, 
produce defects and 
“defect clusters”
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Sensor: Effects of RD

Effects of RD in Si detectors vs. fluence 
(ions/cm2)

S.Barlini et al. (FAZIA) 
Submitted to NIM A
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Sensor: Effects of RD

Effects of RD in Si detectors vs. fluence 
(ions/cm2)

S.Barlini et al. (FAZIA) 
Submitted to NIM A

N.B. Heavy (Xenon) ions!
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Sensor RD: leakage current
Effects of RD in Si detectors vs. fluence (ions/cm2)

S.Barlini et al. (FAZIA) 
Submitted to NIM A
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Sensor RD: collection efficiency

Effects of RD in Si detectors vs. fluence (ions/cm2)

S.Barlini et al. (FAZIA) 
Submitted to NIM A
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Sensor RD: collection time

Effects of RD in Si detectors vs. fluence (ions/cm2)

S.Barlini et al. (FAZIA) 
Submitted to NIM A
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Multiple hits and Pile-Up
Multiple Hit: “true” coincidence. Two particles 
from the same projectile-target interaction hit 
the same sensor.

beam

Target

Sensor1

Sensor2
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Multiple hits and Pile-Up

Pile-Up: a “chance” coincidence. Particles from two 
distinct projectile-target interactions hit the same 
sensor.

Multiple Hit: “true” coincidence. Two particles 
from the same projectile-target interaction hit 
the same sensor.

beam

Target

Sensor1

Sensor2

beam

Target

Sensor1

Sensor2
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Sensor: Multiple Hits
Multiple Hit
Probability: depends on sensor detection efficiency 
(e.g. Solid angle), event multiplicity...does not 
change with event rate (i.e. Beam intensity)

beam

Target

Sensor1

Sensor2
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Time scales, mult.hits, pile-up

optimise SNR => BW limit in FEE => FEE 
time usually dominates  the resolving time 

Times involved:
● Time of Flight difference among particles
 (from one to tens ns depending on velocity 
and distance)

● Charge collection time (e.g. 10-100ns in Si)
● FEE resolving time (e.g. Shaping time 
constant, integration gate duration,...)
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FEE: Pile-Up and high rate

Pile-Up: a “chance” coincidence. 
Particles from two distinct 
projectile-target interactions hit 
the same sensor.

Charge
PreampDetector

Shaper

Current Signal

Charge Signal

Shaped Signal
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FEE: How-to deal w/Pile-Up
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FEE: How-to deal w/Pile-Up

Once pile-up has occurred we can:
1) ignore it (if we know they are few)
2) recognize and discard
3) recognize and disentagle (DSP methods)
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FEE: How-to deal w/Pile-Up

Once pile-up has occurred we can:
1) ignore it (if we know they are few)
2) recognize and discard
3) recognize and disentagle (DSP methods)

To reduce pile-up we can:
1) shorten sensor times (collection, shaping) 
2) increase sensor-target distance
3) reduce sensor area 
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FEE: How-to deal w/Pile-Up

Once pile-up has occurred we can:
1) ignore it (if we know they are few)
2) recognize and discard
3) recognize and disentagle (DSP methods)

To reduce pile-up we can:
1) shorten sensor times (collection, shaping) 
2) increase sensor-target distance
3) reduce sensor area 

Smaller solid angle 
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FEE: Electronic noise

Charge signal variance      (measured, e.g., in 
squared Equivalent Noise Charge, ENC2)

ENC: input charge giving an output voltage 
signal equal to the rms voltage noise. 

Charge 
preamp

CR-RC shaper
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FEE: Electronic noise
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FEE: Electronic noise

Charge 
preamp

CR-RC shaper

Long    => current noise dominates
Short    =>voltage noise dominates



ECOS 2012 18-21 June 2012 G. Pasquali – Charged Particles Detectors

FEE: Electronic noise

Charge 
preamp

CR-RC shaper

Long    => current noise dominates
Short    =>voltage noise dominates



ECOS 2012 18-21 June 2012 G. Pasquali – Charged Particles Detectors

FEE: Electronic noise

Charge 
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CR-RC shaper

Long    => current noise dominates
Short    =>voltage noise dominates
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FEE: Electronic noise
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FEE: Electronic noise

 
● increases linearly with leakage current
● leakage current increases with damage
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FEE: Electronic noise

 
● increases linearly with leakage current
● leakage current increases with damage

● increases w/ decreasing input transistor 
transconductance => decreasing power 

● “amplified” by input capacitance squared 
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FEE: Electronic noise

 
● increases linearly with leakage current
● leakage current increases with damage

● increases w/ decreasing input transistor 
transconductance => decreasing power 

● “amplified” by square on input capacitance 
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FEE: Electronic noise

 
● increases linearly with leakage current
● leakage current increases with damage

● increases w/ decreasing input transistor 
transconductance => decreasing power 

● “amplified” by input capacitance squared 
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FEE: Electronic noise

 
● increases linearly with leakage current
● leakage current increases with damage

● increases w/ decreasing input transistor 
transconductance => decreasing power 

● “amplified” by input capacitance squared

Both increase with temperature!
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FEE: Noise with S-ADC
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FEE: Noise with S-ADC

ENOB=effective number of bits
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Interplay
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Interplay: noise, RD, etc. 

Sensor Area

capacity

pile-up

voltage noise

Shaping time
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Interplay: noise, RD, etc. 

Rad. Damage

Leakage current
current noise

Reduce shaping time,  
keep SNR (if voltage 
noise allows)

Sensor Area

Sensor Area

capacity

pile-up

voltage noise

Shaping time
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Interplay: pile-up

B: Reduce sensor area => also reduces pile-up
A: Move sensor away =>reduces pile-up prob.

However for constant SNR:



ECOS 2012 18-21 June 2012 G. Pasquali – Charged Particles Detectors

Interplay: pile-up

B: Reduce sensor area => also reduces pile-up
A: Move sensor away =>reduces pile-up prob.

However for constant SNR:

Option A=> solid angle  divided by n=> channel# times n 
(@same power per channel) => increase power n times
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A: Move sensor away =>reduces pile-up prob.
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Option B=>  divided by n => channel# times n...
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Option A=> solid angle  divided by n=> channel# times n 
(@same power per channel) => increase power n times
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Interplay: pile-up

B: Reduce sensor area => also reduces pile-up
A: Move sensor away =>reduces pile-up prob.

However for constant SNR:

Option B=>  divided by n => channel# times n...
however: 
capacity divided by n => can scale down FET current (or 
shaping time Ts) by n2 

e.g. Current down by n2=>total power scaled down by n 
(...well, not exactly so...there is a fixed amount of digital power per 
channel...)

Option A=> solid angle  divided by n=> channel# times n 
(@same power per channel) => increase power n times
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A study case
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A study case: LCP ancillary detector

Inspired by D.Mengoni work for TRACE (TRacking Array for 
light Charged Particle Ejectiles)

Basic requirements:

1) particle identification
2) detection efficiency
3) granularity
4) transparency to gamma's
5) Energy resolution about 50keV FWHM for 241Am
6) Timing resolution 500ps FWHM
7) dynamic range (energy) 0.2-300MeV
8) high rates
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A study case: LCP ancillary detector
...a few possible choices

Basic requirements:
1) particle identification
2) detection efficiency
3) granularity
4) transparency to gamma's
5) Energy resolution about 50keV FWHM for 241Am
6) Timing resolution 500ps FWHM
7) dynamic range (energy) 0.2-300MeV
8) high rates!

3)+4)+5)=>Silicon pad or strip detector 

1)=>Two Si layers for E-E, reverse mount for PSA 

2)=>Many wafers (and FEE channels) needed 

5)+8)=>cooling to reduce noise => short Ts
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A study case: LCP ancillary detector
...some numbers

Expected rate per sensor (4 mm x 4 mm) 20kHz if 
● 100pnA beam
● LCP multiplicity 6
● Target A=100, 1 mg/cm2 

Pile-Up probability: 2% for 20kHz with Ts=1s

Radiation Damage:
● Fluence per day at 20kHz 1.1x1010 cm-2...PSA tests 

mandatory (distinguish drift from resolution 
worsening)
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Conclusions

- Segmentation advantages:
● PSA needs uniform doping. Easier to obtain on 

smaller areas (lower cost=>more spares, cfr. RD)
● Better angular resolution
● Lower pile-up probability (short shaping time)
● Better noise and radiation hardness

-  Huge amount of RD studies from HEP, though 
    our constraints can differ (dedicated studies)

- Si detectors with small strip or pixels (mm)
   good candidates for large solid angle
   arrays

- Many open questions, we will need: experimental
 R&D work, detector simulations and...ingenuity! 
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Some open problems

- Spurious coincidences (particles from distinct P+T within 
resolving time)  hard to avoid or reduce (e.g. pulsed beams with 
many particles/bunch!). What's the resolving time? Rate in 
target ~4 MHz, one every 250ns. Make decisions fast! 

- Rad. Damage robustness of PSA and E-E identification for 
LCP must be tested 

- ASIC electronics preferred (many channels in small 
space)...but performance of ASIC electronics in terms of PSA 
identification must be checked! 

- Reliable measurement of total Z of the event could be of 
great help (ancillary+spectrometer).
However: PSA needed for low PID thresholds...

- limit of the present digitizing ACQ on market is 
anyway  few 10kHz. At 100pnA we're there already.

- Rare events => high background...how to select? Trigger 
issues similar to HEP? Rate in target ~4 MHz, one every 250ns. 
Make decisions fast! 
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Thanks!
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Some ASIC specific issues

- relatively low bias voltage=>need bigger feedback capacity for 
the same dynamic energy range with respect to discrete of 
higher bias voltage

- big capacity => occupy large area on ASIC chip

- low voltage noise needs high transconductance, i.e. Large JFET 
bias current => needs large area for JFET

- taking out preamp signal for digitizers problematic

- slow (sequential) readout. Sparse readout faster though it 
needs some timing logic (CFD,...). Dead time after sample/hold.
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CPD: Arrays of Cells
Large solid angle coverage => 
Efficiency for complete events (multiplicity 
measurement, etc)

e.g. Ancillary light 
charged particles (LCP) 
detector for gamma 
detection arrays

EUCLIDES (LNL) 
 ~ year 2000
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Performances
Deposited energy => collected charge
Fluctuations in carrier number, electronic noise etc => 
finite resolution in determining charge (energy).

Scintillator Gas Solid State

Energy/carrier 100−500 eV 20−40 eV ~3 eV

Energy resol. @ 1 MeV 100−500 keV 20−50 keV 1−10 keV

Timing resol. @ 1 MeV ~0.03−1 ns 0.1−1 ns 0.1−2 ns

Detectable particle charge 1−6 >20 all

pulse shape y n y/n

Area limits 100 cm2 m2 cm2

Easy to handle y y/n y

Cost/cm2 medium medium high

Collection time=>timing and resolving time.
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(Z1, A1)

Si
300m (Z2, A2)

E1 = E2        Z1 < Z2 

v(t)

t

v(t)

p++n

p++n

Pausch et al.  IEEE TNS 43 (1996) 1097

Particle ID: Pulse Shape Ident. in Silicon
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Si
300m

Pausch et al.  IEEE TNS 43 (1996) 1097 Bardelli et al. NIM A 654 (2011) 272

Pausch image rotated and flipped for easier comparison.

Particle ID: Pulse Shape Ident. in Silicon
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Particle ID: PSA and Rad. Damage
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Particle ID: PSA and Channeling

Bardelli et al. NIM A 654 (2011) 272
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Particle ID: PSA and Doping Uniformity

Bardelli et al. NIM A 654 (2011) 272

Bardelli et al. NIM A 654 (2011) 272
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Particle ID: E-E and Channeling

Bardelli et al. NIM A 654 (2011) 272
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Open questions

- ASIC or discrete electronics?

- charge or current preamps?

- how to recognize event mixing due to finite 
ToF? (slowest particles of n-th interaction 
detected at the same time as fastest particles 
of (n+1)-st interaction.
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