## The Nuclear Structure facility in Bucharest

### **Dorel Bucurescu**

HH-NIPNE-Bucharest



### IFIN-HH

#### IFIN-HH : Institutul National pentru Fizica si Inginerie Nucleara "Horia Hulubei"

#### "Horia Hulubei" National Institute for Physics and Nuclear Engineering



### **Research Infrastructure**

- 9 MV TANDEM Accelerator (High Voltage, commissioned 1973, modernized 2006 – 2010)
  - Best performances for its class
  - Reliability
- Infrastructure for Experiments
  - Modern and competitive
  - Well-suited for complex experiments
  - Flexibility
- Support infrastructure : LN<sub>2</sub> factory, mechanical workshop, etc.



Sputtering negative ion source SNICS II



Negative He ion source (charge exchange on Li)

AMS sputtering negative ion source MC-SNICS II

#### Modernization program: Main Accelerator Components

- Pelletron chain charging system
  - improved charging efficiency
  - major increase in reliability
  - maintenance of the Pelletron is done 100% by the TANDEM technicians
- New set of accelerator tubes
  - Titanium electrodes, spiral fields
  - increased reliability and lifetime
- Replacement of: power supplies, fluxmeters, GVM, vacuum system, stabilization system.
- Beam pulsing systems: nanosecond system (bunches n.200 ns apart)
  + microsecond system (electrostatic deflection)
- Improvement of ion optics inside the accelerator (90-95% transmission at optimum terminal voltage)

# Sample of ion beams delivered in 2011

| Ion              | Charge | Ion source    | Energy | Intensity after  |
|------------------|--------|---------------|--------|------------------|
|                  | state  |               | (MeV)  | analyzing magnet |
|                  |        |               |        | (nA)             |
| р                | 1+     | SNICS II      | 10     | 300              |
| d                | 1+     | Duoplasmatron | 10     | 1.5              |
| <sup>4</sup> He  | 2+     | Alpha source  | 18.6   | 500              |
| <sup>6</sup> Li  | 3+     | SNICS II      | 32     | 150              |
| <sup>7</sup> Li  | 3+     | SNICS II      | 27     | 25               |
| <sup>9</sup> Be  | 4+     | SNICS II      | 28     | 6                |
| $^{10}B$         | 4+     | SNICS II      | 37     | 8                |
| <sup>11</sup> B  | 5+     | SNICS II      | 47     | 15               |
| <sup>12</sup> C  | 6+     | SNICS II      | 57.5   | 150              |
| <sup>13</sup> C  | 6+     | SNICS II      | 54     | 10               |
| <sup>15</sup> N  | 3+     | SNICS II      | 13.5   | 1                |
| <sup>18</sup> O  | 5+     | SNICS II      | 34     | 90               |
| <sup>19</sup> F  | 8+     | SNICS II      | 68     | 30               |
| <sup>31</sup> P  | 7+     | SNICS II      | 65.8   | 300              |
| <sup>32</sup> S  | 5+     | SNICS II      | 48     | 250              |
| <sup>36</sup> S  | 10+    | SNICS II      | 80     | 20               |
| <sup>35</sup> Cl | 6+     | SNICS II      | 39     | 200              |
| <sup>48</sup> Ti | 7+     | SNICS II      | 60     | 10               |
| <sup>63</sup> Cu | 10+    | SNICS II      | 80     | 60               |

Report of the spring (~march-july) + fall (~sept.-febr.) campaigns / 2011

- 4992 hours (analyzed) beam time delivered for scheduled experiments
- Out of which 1920 (38.5%) hours for experiments proposed by foreign users
- ~500 hours maintenance

#### Infrastructure for Nuclear Physics experiments : Detectors

#### **Present infrastructure:**

- 25 HPGe detectors ~55% efficiency
- two Clover detectors (120% eff.)
- 3 planar Ge (LEP) detectors
- scintillation detectors: 11 LaBr<sub>3</sub>:Ce,
  25 BGO anti-Compton shields
- charged-particle detectors
- neutron (liquid scintillator) detectors
- modern plunger setup (Köln type)
- 2 mini-orange spectrometers for IC el. (Sofia group, under preparation)
- Yale moving tape collector (under installation)
  - Mechanics and the reaction chambers allow <u>flexibility</u> in the configuration of the detectors for various experiments





#### DFN-IFIN: *In-beam* Fast Timing setup HPGe & LaBr<sub>3</sub>:Ce array (until may 2012)



- 11 HPGe
- 4 LEP (planar Ge)
- 11 LaBr<sub>3</sub>:Ce

### **Ongoing developments**

#### **ROball** array with

two basic configurations: - $(i) \le 25$  HPGe 55% detectors with BGO anti-Compton shields -(ii) 10-15 HPGe + 10-15 LaBr<sub>3</sub>:Ce

- Increased granularity
- Increased P/T ratio
- Increased efficiency (Ge: 1-2 %)

Commissioned : June 2012



> Nuclear structure (level schemes) – niche cases

- > Measurements of lifetimes of nuclear excited states:
  - in-beam fast timing: ~10 ps ~10 ns
  - plunger
  - DSAM

Measurements of reaction cross-sections (activation)

#### 1) Niche case: <sup>150</sup>Pm (Z=61,N=89)

<sup>150</sup>Pm states: intermediate in ββ decay of <sup>150</sup>Nd
 Close to critical X(5) point nucleus <sup>150</sup>Nd

No excited states known before !



D.Bucurescu *et al.,* PRC85(2012)017304

<sup>150</sup>Nd(p,nγ) reaction study: Bucurescu et al., Bucharest tandem
 <sup>152</sup>Sm(d,α) reaction study : Bucurescu et al., Q3D München
 <sup>150</sup>Nd(<sup>3</sup>He,t) reaction study: Guess et al., PRC 83(2011)064318 10

#### 2) DSAM in nonselective reaction $(a,n\gamma)$



Collaboration with Dr. A.Pasternak, Sankt Petersburg

<sup>117</sup>Sn( $\alpha$ ,n $\gamma$ )<sup>120</sup>Te @ 15 MeV t<sub>1/2</sub> for 30 levels, J ≤ 12, in preparation

#### 3) Plunger measurements

<sup>76</sup>Ge(<sup>13</sup>C,4n)<sup>85</sup>Sr @56 MeV



#### 4) Fast timing in-beam measurements

#### LaBr<sub>3</sub>:Ce detectors:

- Best energy resolution achievable with scintillators
- Timing comparable with BaF<sub>2</sub>: 100-300 ps depending on the crystal size
- May be used to measure lifetimes in the
  - ~40 ps few ns range

#### Suitable for *in-beam* experiments

- Many detection elements which must behave identically
- Careful off-line energy matching and correction of the CFD time walk with energy → similar time response of all elements (fast detectors)
- Coupling with other kind of detectors





 $LaBr_{3}(Ce)$  $E_{\gamma 1} - E_{\gamma 2} - \Delta t_{12}$ 

#### a) - Fast-timing test case: <sup>199</sup>Tl

<sup>197</sup>Au(α,2n)<sup>199</sup>TI @ 24 MeV

#### 8 HPGe and 5 LaBr<sub>3</sub>:Ce detectors



If g.s. and 367 keV state have pure single-particle configurations, one expects lifetime of several hundreds of picoseconds for the 367 keV level

N.Mărginean *et al.,* EPJA46(2010)329

#### Lifetime of the 367 keV, 3/2+ level



#### Lifetime of the 367 keV, 3/2+ level



#### b) - Fast timing technique: wide range



#### c) - Fast timing: E1 and E3 transitions in Cu isotopes



<sup>67</sup>Cu: 9/2<sup>+</sup> has large  $\pi g_{9/2}$  component (from transfer reactions) E3  $\pi g_{9/2}$ → $\pi p_{3/2}$  enhanced by <u>particle-octupole vibration coupling</u>?

#### Lifetime of positive-parity states in <sup>67</sup>Cu

C. Niță et al. (to be published)



 $^{64}$ Ni( $\alpha$ ,p) $^{67}$ Cu E<sub> $\alpha$ </sub>= 18 MeV

5 HP-Ge ( 55% rel. eff.) 4 HP-Ge planar detectors 8 LaBr<sub>3</sub>:Ce

#### E1/E3 transition strengths in <sup>67</sup>Cu

C. Niță et al. (to be published)



In  ${}^{63,65}Cu$ ,  $B(E3;9/2^+ \rightarrow 3/2^-) \approx 20$  W.u. (from ( $\alpha, \alpha'$ ), (p, p'), (e, e')).



#### d) - Fast timing: Lifetime of $2_1^+$ state in <sup>188</sup>W

<sup>186</sup>W(<sup>7</sup>Li,αp)<sup>186</sup>W @ 32 MeV

(incomplete fusion + low-energy transfer)



P.Mason *et al.*, preliminary

P.Mason, D.Delion, *et al.*, preliminary





#### 5) Reaction cross-sections of astrophysical interest

#### <sup>115</sup>Sn(α,γ), (α,n)

D.Filipescu *et al.,* PRC83(2011)064609



### Summary

• 9 MV TANDEM accelerator in Bucharest completely modernized

Provides good currents, continuous and wide-range pulsed beam for a large number of ion species

- Experimental infrastructure: modern and competitive, developing
  HPGe+LaBr<sub>3</sub> γ-ray ball, well suited for nuclear lifetime measurements
  (in-beam DSAM, plunger, and fast timing)
- Facility + research program: good basis to attract young people
- We are active in international collaborations and offer good support for external groups coming to our laboratory

Proposals of experiments are being submitted to an international PAC twice a year (~february and ~july).

http://www.nipne.ro

http://tandem.nipne.ro

### Acknowledgements

| Romania       | Bulgaria      | Germany        | UK            |
|---------------|---------------|----------------|---------------|
| G. Cata-Danil | D. Balabanski | A. Dewald      | N. Alkhomashi |
| D. Deleanu    | S. Lalkovski  | M. Elvers      | M. Bowry      |
| D. Ghita      | R. Lozeva     | J. Endres      | P. Regan      |
| D. Filipescu  | S. Kysiov     | C. Friessner   | P. Mason      |
| T. Glodariu   | L. Atanasova  | J. Jolie       | O.J. Roberts  |
| R. Marginean  | P. Detistov   | C. Küpersbusch | A. Bruce      |
| N. Marginean  | T. Venkova    | KO. Zell       | T. Alharbi    |
| C. Mihai      | M. Zhekova    | A. Zilges      | Zs. Podolyak  |
| A. Negret     |               | -              | R. Wadsworth  |
| C. Nita       | France        |                |               |
| S. Pascu      |               | Turkey         |               |
| T. Sava       | G Georgiev    |                | USA           |
| L. Stroe      | I M Dauras    | M. Bostan      |               |
| G. Suliman    | J.M. Daugas   | M.N. Erduran   | P. Bender     |
| N.V. Zamfir   |               | A. Kusoalu     | U. Garg       |
|               | Italy         |                | V. Werner     |

C. Michelagnoli E. Farnea C.A. Ur



27

The present structure of PAC is as follows: Chair:

Dr. Gheorghe Căta-Danil (cata@tandem.nipne.ro)

Members:

Dr. Dimiter Balabanski

**Dr. Norbert Pietralla** 

Dr. Attila Krasznahorkay

Dr. Lionel Thome

Dr. Nicolae Marius Mărginean

Secretary:

Dr. Dan Gabriel Ghiță (dghita@tandem.nipne.ro)

# Applied Physics (~30-50% from the available beamtime)

- Materials analysis with : RBS/Channeling (Rutherford backscattering / channeling); NRA (Nuclear Reaction Analysis); ERDA (Elastic Recoil Detection Analysis); PIXE (Particle Induced X-Ray Emission)); PIGE (Particle Induced γ-ray Emission)
- AMS (Accelerator Mass Spectrometry) tritium in Tokamak blankets.

Together with other users, this program will continue at the new accelerators (under commissioning): 3 MV Tandetron (analysis of materials), and 0.5-1.0 MV Tandetron (<sup>14</sup>C AMS).