

## The LIBRA project: Upgraded research facilities at the Tandem accelerator laboratory of NCSR "Demokritos"

✓ LIBRA is funded within the FP7/CAPACITIES/REGPOT programme

## ✓ REGPOT (Research Potential) supports an Action Plan comprising:

- 1. Exchange of know-how and experience with Partner Organizations
- 2. Recruitment of (young) researchers
- 3. Acquisition, development and/or upgrade of equipment and infrastructure
- 4. Organization of Workshops and Conferences
- 5. Dissemination and Promotional Activities

### ✓ LIBRA is a 3-year project

Start: 1<sup>st</sup> January 2009 – End: 31<sup>st</sup> December 2011 ... extended to July 31, 2012

(43 months)







## The LIBRA project: research directions

## **Nuclear Structure**

# Lifetime measurements to search for empirical proofs of the E(5) critical-point symmetry

## **Nuclear Astrophysics**

Cross sections measurements of capture reactions for explosive nucleosynthesis (p process)

## **Ion-beam applications**

to build capacity at national and European level (cultural heritage, materials research, environmental monitoring, ...)







S. Harissopulos, ECOS 2012 Workshop, Villa Vigoni, Como Lake, Italy, June 18-21, 2012





#### Work package list /overview

| Work<br>packages | Work package title                                | Type of<br>activity | Person-<br>months | Start<br>month | End<br>month | Funds<br>allocated |
|------------------|---------------------------------------------------|---------------------|-------------------|----------------|--------------|--------------------|
| WP 1             | Management, co-ordination and assessment          | MGT                 | 36                | 1              | 43           | 118750             |
| WP 2             | Enhancement of human potential                    | SUPP                | 144               | 1              | 43           | 265600             |
| WP 3             | Enhancement of research tools and infrastructure. | SUPP                | 86                | 1              | 43           | 743000             |
| WP 4             | Exchange of knowledge and expertise               | SUPP                | 13                | 4              | 43           | 84500              |
| WP 5             | Organization of international scientific events   | SUPP                | 6                 | 4              | 36           | 45000              |
| WP 6             | Dissemination and promotional activities          | SUPP                | 10                | 1              | 43           | 57100              |
|                  | TOTAL Person-months                               |                     | 295               |                |              |                    |
|                  | TOTAL Direct and personnel costs                  |                     |                   |                |              | 1306400            |
|                  | Subcontracting (Auditor's costs)                  |                     |                   |                |              | 5550               |
|                  | TOTAL INDIRECT Costs (7%)                         |                     |                   |                |              | 91448              |
|                  | TOTAL BUDGET                                      |                     |                   |                |              | 1403398            |





#### WP 3: Enhancement of Research Tools and Infrastructure

#### **Objectives**:

- 1. Development and Acquisition of novel experimental tools (Detectors and Devices)
- 2. Upgrade of the TANDEM Accelerator Components
- 3. Installation of the high-current low-energy accelerator PAPAP
- 4. Acquisition and Installation of a  $\mu$ -beam system at the TANDEM accelerator

#### **Description of Work**

#### Task 3.1: Development and Acquisition of Novel Experimental Tools

<u>Subtask 3.1.1</u> : Acquisition of a  $4\pi$  y-calorimeter

<u>Subtask 3.1.2</u> : Development of an He-filled gas-target system

<u>Subtask 3.1.3</u> : Development of a TPC based on the MICROMEGAS Technology

Subtask 3.1.4 : Installation and Operation of an array of 16 <sup>3</sup>He-filled counters at INP

<u>Subtask 3.1.5</u> : Development - Construction of a plunger device for MINIBALL @ ISOLDE

Subtask 3.1.6 : Acquisition - Installation of a new DAQ system

#### Task 3.2: Upgrade of the TANDEM Accelerator components

#### Task 3.3: Installation of PAPAP

#### Task 3.4: Acquisition and Installation of a μ-beam system at the TANDEM accelerator





#### WP3/T3.1.5: Development & Construction of a plunger for MINIBALL @ ISOLDE

















IBA-1 fit



















S. Harissopulos, ECOS 2012, Villa Vigoni, Como Lake, Italy, June 18-21, 2012

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

SEVENTH FRAMEWORK PROGRAMME

S. Goriely, ESF Workshop on p process, Vravron, Greece, 2002 & M. Arnould and S. Goriely Phys. Rep. 384, 1 (2003)

![](_page_12_Figure_4.jpeg)

#### Scenario: SN-II explosions

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

PHYSICAL REVIEW C 73, 015804 (2006)

#### Branchings in the $\gamma$ process path revisited

Thomas Rauscher\*

Departement für Physik und Astronomie, Universität Basel, CH-4056 Basel, Switzerland (Received 15 September 2005; published 19 January 2006)

TABLE III. Suggestions for reactions to be studied experimentally. Shown are sensitive reactions involving stable or long-lived  $(T_{1/2} \ge 10^6 \text{ a})$  targets. Unstable targets are marked by an asterisk, naturally occuring unstable nuclides with superscript n. Note that  $\alpha$  capture on the unstable targets shown here always has a negative Q value.

![](_page_13_Figure_10.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

$$E_0 = (bkT/2)^{2/3}$$
  

$$b^2 = E_G = 2\mu\pi^2 \frac{e^4 Z_t^2 Z_p^2}{\hbar^2}$$
  

$$\Delta E = (16E_0 kT/3)^{1/2} \exp(-3E_0/kT)$$

| (p, $\gamma$ ) reactions:<br>E <sub>CM</sub> = 1 - 5 MeV,     |
|---------------------------------------------------------------|
| $\sigma = 1 \ \mu b  1 \ m b$                                 |
|                                                               |
| (α,γ) reactions:                                              |
| ( $\alpha,\gamma$ ) reactions:<br>E <sub>CM</sub> = 6–12 MeV, |

|                       |                    |                   | Т                 | =1.8 T <sub>9</sub> | T=3.3 T <sub>9</sub> |                    |  |
|-----------------------|--------------------|-------------------|-------------------|---------------------|----------------------|--------------------|--|
| REACTION              | Z <sub>TARG.</sub> | E <sub>COUL</sub> | Ε <sub>0</sub> ΔΕ |                     | E <sub>0</sub>       | ΔΕ                 |  |
|                       |                    | (MeV)             | (MeV)             | (MeV)               | (MeV)                | (MeV)              |  |
| <sup>74</sup> Se + p  | 34                 | 7.9               | 1.89              | <b>1.27 –</b> 2.52  | 2.83                 | 1.80 <b>- 3.87</b> |  |
| <sup>90</sup> Zr + p  | 40                 | 8.8               | 2.11              | <b>1.45</b> – 2.77  | 3.16                 | 2.07 <b>– 4.26</b> |  |
| <sup>103</sup> Rh + p | 45                 | 9.5               | 2.28              | <b>1.60 –</b> 2.97  | 3.42                 | 2.28 <b>- 4.56</b> |  |
| <sup>124</sup> Sn + p | 50                 | 10                | 2.45              | <b>1.74 –</b> 3.16  | 3.67                 | 2.49 <b>- 4.85</b> |  |

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

S. Harissopulos, ECOS 2012, Villa Vigoni, Como Lake, Italy, June 18-21, 2012

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_3.jpeg)

S. Harissopulos, ECOS 2012, Villa Vigoni, Como Lake, Italy, June 18-21, 2012

![](_page_18_Figure_5.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

100µb

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

![](_page_21_Picture_2.jpeg)

#### WP 3 / Subtask 3.1.1:

The  $4\pi \gamma$ -calorimeter NEOPTOLEMOS

![](_page_21_Figure_5.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_2.jpeg)

WP 3 / Task 3.3:

The PAPAP accelerator

(Petit Accélérateur Pour l'AstroPhysique)

![](_page_22_Picture_6.jpeg)

250 kV proton accelerator delivering

- high-current proton beams (≈0.5 mA)
- deuteron and α-beams possible

A 0.5 mA d-beam and a d-filled gas cell could provide  $\approx 10^9 \text{ n/cm}^2 \text{sec} (E_n \approx 3.5 \text{ MeV})$ with a Tritiated-solid target we could obtain  $\approx 10^{11} \text{ n/cm}^2 \text{sec} (E_n \approx 14 \text{ MeV})$ 

## PAPAP arrived in "Demokritos" during last week of July 2009

![](_page_22_Picture_12.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_2.jpeg)

 $\label{eq:linear} \Sigma \omega \tau \dot{\eta} \rho \log B. \\ \text{Carisonaulos} \mid \text{INSTITOYTO Pryphylkes} ~ \text{even} \\ \text{Supposed for a statement} \\$ 

Εργαστήριο Επιταχυντού ΤΑΝDEM

CALIBRA: CENTRAL

ACCELERATOR LABORATORY FOR ION-BEAM RESEARCH AND APPLICATIONS

| NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _      | GOAL (& title)         | TASK                             | Task description                                                                                                               | BUDGET (€)                                                          |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        |                                  |                                                                                                                                |                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GE 1   |                        | 1.1                              | Upgrade of existing Tandem Accelerator                                                                                         | 650.000                                                             |         |
| 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P 1    | ACCELERATOR<br>SYSTEMS | 1.2                              | Acquisition & installation of a new high-current<br>single-stage 3MV accelerator with ECR source                               | 2.180.000                                                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WORK P |                        | 1.3                              | Acquisition of AMS system components and<br>installation at the (upgraded) Tandem<br>(requires first task 1.1 to be completed) | 1.720.000                                                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |                        |                                  | Total budget of WP1                                                                                                            | 4.550.000                                                           |         |
| 11 Suntales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                        |                                  |                                                                                                                                |                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        | 2.1                              | Upgrade of Workshop.                                                                                                           | 115.000                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      | SUPPORTING             | 2.2                              | Upgrade of existing target preparation lab.                                                                                    | 135.000                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MP N   | FACILITIES             | ACILITIES 2.3 Upgrade of existin |                                                                                                                                | 145.000                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        | 2.4                              | Installation of an AMS dedicated independent lab<br>for AMS target preparation and analysis                                    | 230.000                                                             |         |
| And and the state of the state |        |                        |                                  | Total budget of WP2                                                                                                            | 625.000                                                             |         |
| NUMBER OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                        |                                  |                                                                                                                                |                                                                     |         |
| AN AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WP 3   | P 3                    | INSTRUMENTS                      | 3.1                                                                                                                            | New detectors for γ- and particle spectroscopy and neutron counting | 290.000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        | 3.2                              | Upgrade of existing data acquisition system                                                                                    | 75.000                                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        |                                  | Total budget of WP3                                                                                                            | 365.000                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        |                                  |                                                                                                                                |                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VP 4   | BUILDING               | 4.1                              | Upgrade of the building hosting the existing<br>Tandem accelerator laboratory                                                  | 200.000                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      |                        |                                  | Total budget of WP4                                                                                                            | 200.000                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        |                                  |                                                                                                                                |                                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                        |                                  | TOTAL BUDGET                                                                                                                   | 5.740.000                                                           |         |

![](_page_25_Figure_0.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_2.jpeg)

#### LIBRA PEOPLE

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

WP2 Leader: Ilos Th. Geralis

![](_page_28_Picture_8.jpeg)

WP3 Leader: A. G. Karydas

![](_page_28_Picture_10.jpeg)

WP4 Leader: A. Lagoyannis

![](_page_28_Picture_12.jpeg)

WP5 Leader: P. Demetriou

![](_page_28_Picture_14.jpeg)

WP6 Leader: G. Fanourakis

![](_page_28_Picture_16.jpeg)

M. Andrianis

![](_page_28_Picture_18.jpeg)

Th. J. Mertzimekis

![](_page_28_Picture_20.jpeg)

M. Axiotis

![](_page_28_Picture_22.jpeg)

S. F. Ashley

![](_page_28_Picture_24.jpeg)

R. Huszank

D. Sokaras

![](_page_28_Picture_26.jpeg)

V. Paneta

![](_page_28_Picture_28.jpeg)

![](_page_28_Picture_29.jpeg)

V. Kantarelou

Th. Konstantinopoulos

V. Foteinou

![](_page_28_Picture_33.jpeg)

G. Provatas

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

ESF Workshop on "The future of stable beams in Nuclear Astrophysics" NCSR "Demokritos", Athens, Greece, December 14-15, 2007

![](_page_29_Picture_4.jpeg)

The Workshop focused on the importance of stable ion-beams on Nuclear Astrophysics studies. ..

Almost half of the time of the Workshop was devoted to round-table discussions on

- a) the need to create a new lowenergy stable ion-beam facility in Europe that will be dedicated to Nuclear Astrophysics studies,
- b) the demanding specifications the new facility will have to meet in order to resolve outstanding open questions in Nuclear Astrophysics and
- c) the major scientific problems that can be studied almost exclusively with stable ion-beams.

- 1) Many nuclear reactions across the periodic table play an important role in the aspects of stellar nucleosynthesis. Some of them (≈25 reactions among light nuclides) are considered as the "key reactions" as they play a decisive role in the energy production in stars as well as in their evolution. The very small cross sections of these reactions initiated a severe number of indirect measurements that improved our knowledge of stellar evolution considerably. Yet, as their results suffer from model dependencies, they cannot replace the direct measurements. The latter are still considered to provide the clearest signatures of many astrophysical phenomena.
- 2) Direct measurements require intense low-energy stable ion-beams (notably protons, alpha-particles and some other heavier nuclides) with a proper energy resolution (1 keV). Unfortunately, leading nuclear astrophysics laboratories in Europe fulfilling these requirements are already closed or will be closed in the near future, while others have been "transformed" into analytical laboratories or irradiation facilities in order to survive in a highly competitive environment, where the demand for industrial applications has washed out many basic research activities in the field of low-energy nuclear physics. As a result, a flagship facility for nuclear astrophysics studies in Europe is missing and, hence, there is an urgent need for Europe to create a new state-of-the art high-current facility equipped with advanced detection techniques.

## Accelerators and Instrumentation for nuclear astrophysics

|                          | Stellar Burning |  |  | Explosive Burning |    |    |   |   |  |
|--------------------------|-----------------|--|--|-------------------|----|----|---|---|--|
| FACILITY/REACTIONS       | H He HI s       |  |  | r                 | rp | αр | γ | ν |  |
| Low-E Stable Beam        |                 |  |  |                   |    |    |   |   |  |
| High-E Stable Beam       |                 |  |  |                   |    |    |   |   |  |
| RIB-ISOL                 |                 |  |  |                   |    |    |   |   |  |
| <b>RIB-Fragmentation</b> |                 |  |  |                   |    |    |   |   |  |
| Spallation n (v) source  |                 |  |  |                   |    |    |   |   |  |
| Free Electron Laser      |                 |  |  |                   |    |    |   |   |  |

| SITE                     | Big Bang | Cosmic<br>Ravs | Super-<br>novae | Neutron<br>Stars |
|--------------------------|----------|----------------|-----------------|------------------|
| Low-E Stable Beam        |          |                |                 |                  |
| High-E Stable Beam       |          |                |                 |                  |
| RIB-ISOL                 |          |                |                 |                  |
| <b>RIB-Fragmentation</b> |          |                |                 |                  |
| Neutrino sources         |          |                |                 |                  |

32

## Accelerators and Instrumentation for nuclear astrophysics

|                       | LE-SB | HE-SB | RIB<br>ISOL | RIB<br>FRAG | SNS | FEL |
|-----------------------|-------|-------|-------------|-------------|-----|-----|
| Gamma array-segmented |       |       |             |             |     |     |
| Silicon-Strip Arrays  |       |       |             |             |     |     |
| Neutron Array         |       |       |             |             |     |     |
| Spectrograph          |       |       |             |             |     |     |
| Mass Separator        |       |       |             |             |     |     |
| Gas/Liquid Targets    |       |       |             |             |     |     |
| Radioactive Targets   |       |       |             |             |     |     |
| Traps                 |       |       |             |             |     |     |