

aboratoire commun CEA / DSM - CNRS / IN²P

Status and Challenges of the SPIRAL2 driver accelerator

Patrick Bertrand

On behalf of the SPIRAL2 accelerator team

GANIL/SPIRAL2 by 2015...

Construction of SPIRAL2 Phase 1 building

Preparation of the site in November 2010

Construction of Phase 1 building

Photo JM Enguerrand - 19 mai 2011

Excavations ready May 2011

Construction of Phase 1 building

The same view in May 2012...

International Collaborations

For accelerator, production, physics and detectors...

	Partners	artners for the SPIRAL2 ACCELERATOR					
CEA/DSM				CIT	IN2P		N2P3
Unités du centre Saclay				IPNO	(C)rsay)	
IRFU/SACM	(Saclay)			IPNL	(L	yon)
IRFU/SIS	(Saclay)			IPHC	(S	strasbourg)
IRFU/SPHN/LENAC (Saclay)		Saclay)			LPSC	; (G	Grenoble)
DAM/ DP2I					LAL	(0	Orsay)
DAM/DPTA		Ar		_			
		IUICI	igii iabu		3		
SOREQ (I	lsraël)	IFIN-	НН	(Bucares	st)	ARGONNE	(USA)
CIEMAT (S	Spain)	Huelv	va	(Spain)		BARC	(India)
INFN (I	Italy)						

GANIL-SPIRAL1-SPIRAL2 Layout

Phase 1: High intensity stable beams + Experimental rooms (S³ + NFS)
 Phase 2: RIB Production + post-accelerated RIBs + DESIR

SPIRAL2 Driver Beam Characteristics

Some Challenges of the SPIRAL2 ...

- Huge variety of beams
 - Simulations for design
 - Beam Intensity
 - Beam power
 - Energy range
- Components of the accelerator
 - Heavy Ion ECR source
 - Transfer lines
 - RFQ design/construction
 - Cryomodules and couplers
 - Main Beam Dump

- \rightarrow Double Challenge !
- → Find compromises (Frequency, apertures...)
- \rightarrow Space Charge (or not), diagnostics, vacuum...
- \rightarrow Machine protection, Beam dump, activation...
- \rightarrow The design itself, multiple tunings...

- \rightarrow 1mA Ar¹²⁺... and metallic ions...
- \rightarrow complexity, depends of many laboratories...
- \rightarrow mechanical tolerances, seals...
- \rightarrow 6.5 MV/m in operation, clean integration process...
- \rightarrow 200 kW, surveillance, water circuit...
- Security, safety, radioprotection and protection of the machine
 - ➢ Beam losses (< 1W/m) → Machine protection system, activation...</p>
 - Nuclear Ventilation, activation of Beam dump water...
 - Safety report, earth quake consequences...
- Anticipate future extensions \rightarrow Injector for Q/A=1/6 ions, Building implantation...

Our optimisation strategy for the construction of the Spiral2 accelerator

- Build Prototypes when possible (RFQ, cavities, amplifiers, LLRF...)
- Run a maximum of <u>technical and assembly tests</u> in laboratories and/or with companies
 - Run beam tests at LPSC/Grenoble and IRFU/Saclay
 - Collaboration between teams
 - . Validation of the Design et the beam dynamics
 - . Gain time for the installation/tests at GANIL/SPIRAL2 site

Optimise the interweaving between the <u>building planning</u> and the <u>accelerator planning</u>

Phoenix-V2+LEBT1 beam tests (LPSC Grenoble)

RESULTS FOR GASES				
I max for Q optimum		I max for Q/A 1/3		
4He	> 2 mA ¦ 2+ non opt.	> 2 mA ¦ 2+ non opt.		
160	1.3 mA ¦ 6+	1.3 mA ¦ 6+		
40Ar	450 μA ¦ 9+ 350 μA ¦ 11+	175 μA ¦ 12+ Isotope 36 70 μA ¦ 13+ Isotope 40 22 μA ¦ 14+ Isotope 40		
86Kr	110 µA ¦ 17+	non measurable		

20 µAe Ni 19+ obtained !!!

Phoenix-V2+LEBT1 beam tests (LPSC Grenoble)

0.8

- 0.6

- 0.4

0.2

- 0.8

0.6

- 0.4

- 0.2

20

20

stable 62 kV reached !

Source	Voltage :	53.33 kV
Q/m	:	1/2.66

Beam Intensity: 1.3 mA

Measured emittances $(\pi.\text{mm.mrad norm. RMS})$

Horizontal	: 0.25
Vertical	: 0.14

Deuteron/proton ECR + LBE2+LBEC beam tests (IRFU – Saclay)

- LBEC beam line added in 2011 with all instrumentation and Interlocks. (up to RFQ entrance)
- More than 5 mA proton or Deuteron beam conducted to end LBEC in September 2011
- Slow chopper tested with success . (developed by Catania)

Beam tests results for Deuterons (IRFU – Saclay)

lon	Proportion	Courant	
lons	100 %	6.9 mA	
H⁺	2.1 %	0,15 mA	
H_2^+	0,5 %	0.035 mA	
D+	83 %	5.8 mA	
D ₂ +	9.7 %	0.68 mA	
D_3^+	0 %	0 mA	
lons lourds	3.5 %	0.25 mA	

Beam tests results for Deuterons (D. Uriot, IRFU – Saclay)

Real beam matched at RFQ entrance, Measured with the emittancemeter

Emittance measured at RFQ entrance

Generation of particles with TRACEWIN code...

accelerated and bunched

Emittance obtained at RFQ exit

T5 segment - 3D measurements

RFQ Status (IRFU – Saclay)

- 88.05 MHz, 4-vanes, 5 meters long more than 97% transmission
- Segment T5 manufactered and accepted (but revealed vacuum gasket problems..)
- ➤ T1 .. T4 tubes achieved
- > 3D measurements of segment T4 last week
- Planning to be followed strictly...

RFQ Status (IRFU – Saclay)

All tubes machined

Tube T4 measured (last week)

All electrodes pre-machined, some measured

Assembly system ready (T4+T5 assembly at Saclay ASAP) Page 19

The MEBT Challenge...

- Accept future 1/6 beams Injector
- Fast chopper and deviated beam stop.
- Protect the linac against halo
 → 3 sets of H-V slits
- Match all types of beams to linac
- Measurement of beam intensity at Linac Entrance

MEBT: First rebuncher Tested at GANIL

The first rebuncher

Tests of new LLRF + C/C (GANIL+IRFU, June 2012)

Assembly test Cryo A + Warm section Page 22

LINAC cryomodules, couplers and amplifiers

LINAC Warm Sections activities...

All Boxes ready

Quadrupole assembly

Box + quads...

Magnetic measurements

Insertion of one BPM

HEBT Lines (IPNO, IPNL, Ciemat (Spain), GANIL

HEBT dipoles under construction

Page 26

- Dipoles under construction
 - ^{1st} one received,
 - measurement running at GANIL...
- Quadripoles and steerers under construction

Cryogenic system (IPN

Helium gas buffer ready

Cold Box to be tested this week

Valve boxes ready

Diagnostics...(GANIL, IPNO, NIPNE, IPHC, SARAF)

Beam tests with SPIRAL2 BPM (IPNO) installed at SARAF (Israel)

MEBT Diag-Plate (IPHC Strasbourg)

Electronics for profilers (Ganil development)

Beam Loss Monitors development (IFIN-HH Romania)

EPICS LEBT2 + LEBC interface

Fast acquisition (FC/ACCT/DCCT)

Management of Parameters EPICS based system

Many tools developped and already used in operation on LEBT lines

Many tools and programs under development

Command/control

Beam alignment (Xal application)

Vacuum LBEC synoptic

Another challenge: Synthesis between the accelerator and the building

Accessibility, footbridges and security of workers...

Last but not least...

Effect of an earthquake on the building integrity...

CONCLUSION

Good beam tests performed at Saclay and Grenoble:

- Allowed us to check the design of transfer lines
- Good emittances, separation, vacuum, beam profiles
- Behaviour of slow chopper and associated deviated beam stop
- Development of metallic beams
- Validation of 60 kV for 1/3 ions ECR source

Big contracts remain to be launched in 2012:

- ECR 18 GHz Emittor
- Mechanic supports and vacuum tubes (MEBT + HEBT)
- Set of diagnostics to complete
- RFQ cooling system
- Vacuum pumps and <u>rapid vanes (EIS)</u> (MEBT+LINAC+HEBT)
- HEBT <u>Commutation grid (EIS)</u>
- Main Beam Dump (HEBT)
- Development of MPS system...

THANK YOU !

Day 1 SPIRAL2 LINAC beams

✓ Starting source for commissioning and first experiments => Phoenix V2
 ✓ Upgrade of Phoenix V2 => V3 Large plasma chamber and new oven Ø20 mm