

La sensibilità dei Rivelatori di Onde Gravitazionali: Il Ruolo della Compensazione Termica

M. Ianni, L. Aiello, E. Cesarini, M. Cifaldi, V. Fafone, M. Lorenzini, D. Lumaca, Y. Minenkov, I. Nardecchia, A. Rocchi, V. Scacco, C. Taranto

IFAE 2025

Cagliari 09/04/2025

Le Onde Gravitazionali

- Increspature dello spazio-tempo;
- Soluzione dell'equazione di Einstein:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu};$$

Le Onde Gravitazionali

- Increspature dello spazio-tempo;
- Soluzione dell'equazione di Einstein:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu};$$

Emissione di Onde Gravitazionali:

$$L = \frac{2G}{5c^5} \langle \ddot{Q}_{ij} \ddot{Q}^{ij} \rangle \sim \varepsilon^2 \frac{c^5}{G} \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^2 \longrightarrow$$

Sorgenti Asimmetriche – Compatte – Relativistiche

Le Onde Gravitazionali

- Increspature dello spazio-tempo;
- Soluzione dell'equazione di Einstein:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu};$$

Emissione di Onde Gravitazionali:

$$L = \frac{2G}{5c^5} \langle \ddot{Q}_{ij} \ddot{Q}^{ij} \rangle \sim \varepsilon^2 \frac{c^5}{G} \left(\frac{R_s}{R}\right)^2 \left(\frac{v}{c}\right)^2 \longrightarrow$$

Sorgenti Asimmetriche – Compatte – Relativistiche

- Segnali Periodici
- Segnali Transienti
- Fondo Stocastico

Segnali Transienti Rilevati

Attività Osservativa e Sviluppi Futuri

• Ogni miglioramento della sensibilità amplia la portata dell'astronomia gravitazionale e multimessaggera.

Attività Osservativa e Sviluppi Futuri

- Ogni miglioramento della sensibilità amplia la portata dell'astronomia gravitazionale e multimessaggera.
- Transizione verso detector di terza generazione (ET Cosmic Explorer)

Rivelazione Interferometrica

Le Onde Gravitazionali modificano localmente la metrica dello spaziotempo:

$$\Delta L(\sim 10^{-18} \text{m}) \Rightarrow \Delta P_{out}$$

$$\Delta \Phi_{Mich} = \frac{4\pi}{\lambda_L} \Delta L$$

2017, premio Nobel per la fisica a seguito della rivelazione diretta di Onde Gravitazionali.

Rivelazione Interferometrica

Le Onde Gravitazionali modificano localmente la metrica dello spaziotempo:

$$\Delta L(\sim 10^{-18} \text{m}) \Rightarrow \Delta P_{out}$$

$$\Delta \Phi_{Mich} = \frac{4\pi}{\lambda_L} \Delta L$$
 \Longrightarrow $\Delta \Phi_{FP} = \frac{2F}{\pi} \Delta \Phi_{Mich}$

2017, premio Nobel per la fisica a seguito della rivelazione diretta di Onde Gravitazionali.

Rumore Newtoniano < 20 Hz;

- Rumore Newtoniano < 20 Hz;
- Rumore Termico [20-300] Hz;

- Rumore Newtoniano < 20 Hz;
- Rumore Termico [20-300] Hz;
- Rumore Quantistico > 300 Hz:
 - Shot noise $\propto \sqrt{1/P_{in}}$;
 - Pressione di radiazione $\propto \sqrt{P_{in}}$.

Assorbimento di Potenza

Assorbimento di Potenza

Gradiente di Temperatura

$$\Delta W(r,\theta) \approx \beta \int_{0}^{h} \Delta T(r,\theta,z) dz$$

Assorbimento di Potenza

Gradiente di Temperatura

Riduzione delle performance dell'ITF

$$\Delta W(r,\theta) \approx \beta \int_{0}^{h} \Delta T(r,\theta,z) dz$$

Assorbimento di Potenza

Gradiente di Temperatura

Riduzione delle performance dell'ITF

$$\Delta W(r,\theta) \approx \beta \int_{0}^{h} \Delta T(r,\theta,z) dz$$

$$R \approx \frac{dn}{dT}$$

• *n:* indice di rifrazione;

• **Termo-ottico:** variazione di *n* nel substrato ;

Assorbimento di Potenza

Gradiente di Temperatura

Riduzione delle performance dell'ITF

$$\Delta W(r,\theta) \approx \beta \int_{0}^{h} \Delta T(r,\theta,z) dz$$

$$\beta \approx \frac{dn}{dT} + \alpha (1 + \sigma_{P})(n-1)$$

- *n:* indice di rifrazione;
- α : coefficiente di espansione termica;
- σ_P : rapporto di Poisson.
- **Termo-ottico:** variazione di *n* nel substrato ;
- **Termo-elastico:** deformazione superficiale;

Assorbimento di Potenza

Gradiente di Temperatura

Riduzione delle performance dell'ITF

$$\Delta W(r,\theta) \approx \beta \int_{0}^{h} \Delta T(r,\theta,z) dz$$

$$\beta \approx \frac{dn}{dT} + \alpha (1 + \sigma_{P})(n-1)$$

- *n:* indice di rifrazione;
- α : coefficiente di espansione termica;
- σ_P : rapporto di Poisson.
- **Termo-ottico:** variazione di *n* nel substrato ;
- **Termo-elastico:** deformazione superficiale;
- Difetti freddi: imperfezioni delle ottiche;

Sistema di Compensazione Termica

Mitigazione delle aberrazioni ottiche derivanti sia dagli effetti termici che dai difetti freddi per ripristinare la configurazione ottica nominale dell'interferometro.

• Sensori:

- Hartmann Wavefront Sensor (HWS);
- Phase Camera (PC);

• Attuatori:

- Ring Heater (RH);
- CO₂ Laser: Double Axicon System (DAS);
- CO₂ Laser: Central Heating (CH);

Sensore di fronte d'onda Hartmann (HWS)

• Sensore **differenziale** che misura le variazioni del fronte d'onda di un fascio sonda rispetto al valore riferimento.

Integrazione Numerica

$$\frac{\partial \Delta W}{\partial x} = \frac{\Delta x_i}{L} \longrightarrow \Delta W$$

Sviluppato dal gruppo LIGO – University of Adelaide (AU)

Sensore Hartmann: uno strumento, molteplici utilizzi

Sensore Hartmann: uno strumento, molteplici utilizzi

• Centraggio degli attuatori;

Sensore Hartmann: uno strumento, molteplici utilizzi

- Centraggio degli attuatori;
- Identificazione dei "Point Absorber";

Sensore Hartmann: uno strumento, molteplici utilizzi

- Centraggio degli attuatori;
- Identificazione dei "Point Absorber";
- Misure dell'assorbimento del Coating delle ottiche.

Attuatori della TCS

- I Ring Heater circondano le ottiche e le riscaldano riducendone il Raggio di Curvatura (**RoC**), compensando l'effetto termo-elastico.
- Il laser CO_2 agisce su delle piastre di compensazione (CP) e il suo profilo viene modellato per produrre pattern correttivi assi-simmetrici:
 - Central Heating (CH), riscaldamento della parte centrale dello specchio, usato per mantenerne lo stato termico delle ottiche in assenza del laser principale;
 - Riscaldamento anulare, generato tramite un sistema ottico a Doppio Axicon (DAS) e usato per compensare aberrazioni di fronte d'onda statiche e la lente termica indotta dal laser principale.

Aumento di Potenza e Residui

L'aumento della potenza circolante, necessaria per migliorare sensibilità alle alte frequenze, comporta un aumento degli effetti termici e conseguentemente delle aberrazioni di fronte d'onda.

Deterioramento dei segnali di controllo

Nuovo HWS

Nuovo sensore CMOS per sostituire la CCD Dalsa Pantera 1M60 (fuori produzione)

- Sensore CMOS Ximea testato
- Sensibilità del nuovo HWS compatibile con requisiti AdV+ (RMS ≤ 0.4 nm)

Parameter		Ximea	DALSA
Pixel array size $(H \times V)$	[pixel]	2048×2048	1024×1024
Active area size (H \times V)	[mm]	11.27×11.27	11.27×11.27
Pixel size (H \times V)	$[\mu m]$	5.5×5.5	12×12
Full Well Capacity (FWC)	$[\mathrm{ke}^{-}]$	13.5	350
Amplifier noise	[e-]	12 (RMS)	1.2 (RMS)
Dark current	$[e^{-}/s]$	$125~(25^{\circ}~\mathrm{C})$	813 (45° C)
Digitization	[bit]	10	12
Framerate	[fps]	90	60

Sensibilità Richiesta: $2\frac{\langle \Delta W_{max} \rangle}{10} \sim 0.4 \ nm$

	wavefront RMS [nm]
N_{img}	Ximea	DALSA
1	0.96	0.57
100	0.11	0.12
1000	0.04	0.05

Fluttuazioni di temperature, inducendo un defocus termico, limitano le performance del sensore.

Nuovo HWS

Sistema di controllo della temperature con celle di Peltier, testato e funzionante.

 $\Delta T < 40 \text{ mK}$

Nuovo HWS

Sistema di controllo della temperature con celle di Peltier, testato e funzionante.

Miglioramento dello scambio termico con l'ambiente ottimizzando i materiali di cui è composto l'involucro.

• Simulazioni termiche e strutturali ANSYS per determinare i materiali ottimali.

Miglioramenti TCS: Mode Cleaner Laser CO_2

La qualità del profilo di riscaldamento del DAS è influenzata dalla presenza di Modi di Ordine Superiore (HOMs) che si sovrappongono al modo fondamentale (TEM00) del laser CO_2 .

Per filtrare i modi di ordine superiore e migliorare la qualità del fascio laser CO_2 utilizzato, in Advanced Virgo verranno installate apposite cavità ottiche dette **Mode Cleaner**.

Miglioramenti TCS: Compensazione Residui

Per consentire una compensazione mirata dei residui non assi-simmetrici è in corso lo sviluppo e la caratterizzazione di un nuovo attuatore, uno **Specchio Deformabile**.

Quando un fascio laser CO_2 viene riflesso dallo specchio deformabile, questo applica la fase necessaria per ottenere il profilo di intensità desiderato.

La correzione risultante è statica e adattiva, **non introduce rumore nel rivelatore**.

Conclusioni

- L'aumento della potenza circolante negli interferometri impone un controllo delle aberrazioni ottiche sempre più accurato al fine di mantenere le prestazioni e la stabilità del sistema richieste.
- Sono in corso sviluppi e ottimizzazioni della TCS per affrontare le sfide dei prossimi run scientifici.
- Le conoscenze e le competenze maturate negli anni stanno contribuendo alla progettazione di soluzioni avanzate, preparando il terreno per i rivelatori di terza generazione.

