Einstein Telescope: sfide e soluzioni per il rumore magnetico

Incontri di Fisica delle Alte Energie 9-11 Aprile 2025, Cagliari

Federico Armato, Barbara Garaventa, Andrea Chincarini

Einstein Telescope

Forma: triangolo o doppia L

Lunghezza bracci: 10km o 15km

Profondità: 200-300m

Siti candidati: Italia (Sos Enattos, Sardegna), Olanda, Germania.

Fig 1. Curva di sensibilità di progetto per ET ottenuta dalla combinazione di un interferometro ottimizzato a basse frequenze (curva blu) e di uno ottimizzato ad alte frequenze (curva azzurra) [1].

Fig 2. Esempio di un ipotetico bilancio del rumore ambientale di ET nelle basse frequenze per ottenere la sensibilità di progetto (**curva nera**). Le linee tratteggiate indicano i livelli di rumore ambientale senza la necessaria mitigazione [2].

2

Cos'è il rumore magnetico?

Il termine rumore magnetico è ingannevole. A differenza di altri tipi di rumore, come quello quantistico e quello termico, che sono intrinsechi dell'interferometro, **il rumore magnetico si origina dall'interazione tra campi magnetici esterni e specifiche componenti dell'interferometro.** Senza questi accoppiamenti, il rumore magnetico sarebbe assente.

Cos'è il rumore magnetico?

Il termine rumore magnetico è ingannevole. A differenza di altri tipi di rumore, come quello quantistico e quello termico, che sono intrinsechi dell'interferometro, **il rumore magnetico si origina dall'interazione tra campi magnetici esterni e specifiche componenti dell'interferometro.** Senza questi accoppiamenti, il rumore magnetico sarebbe assente.

Pertanto, studiare il rumore magnetico significa analizzare sia le sorgenti di campo magnetico che le componenti dell'interferometro che interagiscono con esse. Insieme a comprendere il meccanismo di accoppiamento.

Cos'è il rumore magnetico?

Il termine rumore magnetico è ingannevole. A differenza di altri tipi di rumore, come quello quantistico e quello termico, che sono intrinsechi dell'interferometro, **il rumore magnetico si origina dall'interazione tra campi magnetici esterni e specifiche componenti dell'interferometro.** Senza questi accoppiamenti, il rumore magnetico sarebbe assente.

Pertanto, studiare il rumore magnetico significa analizzare sia le sorgenti di campo magnetico che le componenti dell'interferometro che interagiscono con esse. Insieme a comprendere il meccanismo di accoppiamento.

Questo ha come conseguenza che la mitigazione del rumore magnetico ha un duplice approccio:

- Riduzione del campo magnetico della sorgente, laddove sia possibile (normalmente lo è se la sorgente è di natura antropica);
- Mitigazione del campo magnetico nei pressi della componente dell'interferometro che si accoppia con il campo esterno.

Sorgenti di rumore magnetico

Sorgenti ambientali:

Sorgenti ambientali:

General Risonanze di Schumann

Onde elettromagnetiche a bassa frequenza che si generano nella cavità risonante tra la superficie della terra e la ionosfera.

General Risonanze di Schumann

Onde elettromagnetiche a bassa frequenza che si generano nella cavità risonante tra la superficie della terra e la ionosfera.

Sorgenti ambientali:

Distribuzione di corrente (es. 50 Hz)

General Risonanze di Schumann

Onde elettromagnetiche a bassa frequenza che si generano nella cavità risonante tra la superficie della terra e la ionosfera.

Sorgenti ambientali:

- Distribuzione di corrente (es. 50 Hz)
- Dispositivi elettronici e/o con magneti: es. trasformatori, Faraday Isolator ...

General Risonanze di Schumann

Onde elettromagnetiche a bassa frequenza che si generano nella cavità risonante tra la superficie della terra e la ionosfera.

Fig 3. Confronto dello spettro magnetico tra una zona a basso rumore di Virgo e Villa Cristina (situata a circa 13 km da Virgo) [3].

Sorgenti ambientali:

- Distribuzione di corrente (es. 50 Hz)
- Dispositivi elettronici e/o con magneti: es. trasformatori, Faraday Isolator ...

General Risonanze di Schumann

Onde elettromagnetiche a bassa frequenza che si generano nella cavità risonante tra la superficie della terra e la ionosfera.

Sorgenti ambientali:

Distribuzione di corrente (es. 50 Hz)

Dispositivi elettronici e/o con magneti: es. trasformatori, Faraday Isolator ...

Fig 3. Confronto dello spettro magnetico tra una zona a basso rumore di Virgo e Villa Cristina (situata a circa 13 km da Virgo) [3].

Fig 4. Spettro magnetico misurato a Virgo nell'edificio centrale. N, W e V indicando rispettivamente al direzione **nord-sud**, **ovest-est** e **verticale** al terreno [4].

Incontri di Fisica delle Alte Energie 2025

L'accoppiamento magnetico:

A Virgo vengono regolarmente fatte delle iniezioni magnetiche al fine di studiare le funzioni di accoppiamento (coupling functions CFs) dell'interferometro.

In particolare, in ciascun edificio le risposte dell'interferometro a iniezioni di campo vicino, realizzate con bobine piccole (small coils SCs), vengono messe linearmente in relazione con la risposta dell'interferometro a un'iniezione di campo lontano, realizzata con una bobina grande (big coil BC):

$$CF_{BC}(f) = \sum_{i=1}^{N} \alpha_i CF_{i,SC}(f)$$

In questo modo, i coefficienti α_i ci permettono di gerarchizzare le aree degli edifici da quelle più sensibili, ovvero quelle in cui l'accoppiamento è maggiore, a quelle meno sensibili, ovvero quelle in cui l'accoppiamento è minore.

> MAGNETI DELLA MASSA DI TEST

Tecniche di mitigazione

Lo shielding Factor

Definiamo lo Shielding Factor (SF) come il rapporto tra il campo magnetico prima e dopo l'applicazione di un sistema di mitigazione.

In particolare, abbiamo due casi possibili:

Vogliamo ridurre il campo magnetico emesso da una certa sorgente (es. Faraday Isolator) In tal caso lo SF sarà il rapporto tra il flusso uscente prima e dopo l'applicazione del sistema di mitigazione

□ Vogliamo mitigare il campo che raggiunge una certa zona (es. una torre dell'interferometro) In tal caso lo SF sara il rapporto tra il flusso entrante prima e dopo l'applicazione del sistema di mitigazione

Mitigazione attiva: correnti adattive

Sono autonome

Mitigazione attiva: correnti adattive

Richiedono un'alimentazione e un circuito di feedback

- Sono autonome
- Hanno uno shielding factor limitato

Mitigazione attiva: correnti adattive

- Richiedono un'alimentazione e un circuito di feedback
- Hanno uno shielding factor virtualmente infinito

- Sono autonome
- Hanno uno shielding factor limitato
- Hanno una capacità di shielding fortemente dipendente dalla frequenza

Mitigazione attiva: correnti adattive

- Richiedono un'alimentazione e un circuito di feedback
- Hanno uno shielding factor virtualmente infinito
- Sono efficaci a schermare sia campi statici che oscillanti virtualmente a tutte le frequenze

- Sono autonome
- Hanno uno shielding factor limitato
- Hanno una capacità di shielding fortemente dipendente dalla frequenza

Mitigazione attiva: correnti adattive

- Richiedono un'alimentazione e un circuito di feedback
- Hanno uno shielding factor virtualmente infinito
- Sono efficaci a schermare sia campi statici che oscillanti virtualmente a tutte le frequenze

Risposta di un cilindro cavo in rame di raggio 1 m, altezza 0.5 m e spessore 1 cm a un campo magnetico esterno di 1 T, diretto lungo il suo asse e oscillante a 1 Hz (figura a sinistra) e 10 Hz (figura a destra)

Funzionano a temperatura e pressione ambiente

Richiedono temperature e/o pressioni specifiche

- Funzionano a temperatura e pressione ambiente
- Raggiungono shielding factor molto elevati

- Richiedono temperature e/o pressioni specifiche
- Raggiungono shielding factor virtualmente infiniti

- Funzionano a temperatura e pressione ambiente
- Raggiungono shielding factor molto elevati
- Rischiano di saturare

- Richiedono temperature e/o pressioni specifiche
- Raggiungono shielding factor virtualmente infiniti
- Rischiano di saturare

- Funzionano a temperatura e pressione ambiente
- Raggiungono shielding factor molto elevati
- Rischiano di saturare

- Richiedono temperature e/o pressioni specifiche
- Raggiungono shielding factor virtualmente infiniti
- Rischiano di saturare

- Funzionano a temperatura e pressione ambiente
- Raggiungono shielding factor molto elevati
- Rischiano di saturare
- Sono dipendenti dalla geometria

- Richiedono temperature e/o pressioni specifiche
- Raggiungono shielding factor virtualmente infiniti
- Rischiano di saturare
- Sono dipendenti dalla geometria

- Funzionano a temperatura e pressione ambiente
- Raggiungono shielding factor molto elevati
- Rischiano di saturare
- Sono dipendenti dalla geometria

- Richiedono temperature e/o pressioni specifiche
- Raggiungono shielding factor virtualmente infiniti
- Rischiano di saturare
- Sono dipendenti dalla geometria

27

Applicazioni

Shielding della torre della TM:

Le torri che ospitano le masse di test sono tra le componenti più importanti da schermare. Diverse simulazioni sono state svolte utilizzando tecniche di mitigazione passiva: schermi ferromagnetici e correnti indotte [5].

Shielding con schermi ferromagnetici:

Le torri che ospitano le masse di test sono tra le componenti più importanti da schermare. Diverse simulazioni sono state svolte utilizzando tecniche di mitigazione passiva: schermi ferromagnetici e correnti indotte [5].

Fig 5. Rappresentazione schematica di una torre di Virgo (giallo) ospitante una massa di test (grigio). In blu sono rappresentati gli schermi ferromagnetici utilizzati.

Fig 6. Shielding Factor (SF) ottenuto ricoprendo i bracci dell'interferometro in corrispondenza della torre con uno strato ferromagnetico di permeabilità magnetica relativa di 100.000 per 2 m [5].

Thickness (mm)	Shielding Factor ($\mathbf{B}_{ext} = B\hat{x}$)	Shielding Factor ($B_{ext} = \frac{B}{\sqrt{2}}(\hat{x}, \hat{y})$)
0.4	3.92	3.62
0.8	4.81	4.42
1.2	5.66	5.19
1.6	6.48	5.95
2.0	7.29	6.68

Shielding con correnti indotte:

Le torri che ospitano le masse di test sono tra le componenti più importanti da schermare. Diverse simulazioni sono state svolte utilizzando tecniche di mitigazione passiva: schermi ferromagnetici e correnti indotte [5].

Frequency $[Hz]$	Shielding Factor	Shielding Factor
1	1.0056	1.0417
2	1.0189	1.1380
5	1.0568	1.3970
10	1.0797	1.5480
20	1.0888	1.6079
50	1.0928	1.6348
100	1.0951	1.6502
200	1.0971	1.6646

Fig 8. Rappresentazione schematica della torre della TM. In blu quattro anelli di rame in configurazione di Helmholtz.

Fig 9. Shielding Factor (SF) ottenuto a diverse frequenze inserendo quattro anelli in rame di sezione rettangolare di base 5 cm e altezza 2 cm. La prima e la seconda colonna fanno riferimento rispettivamente alla **Fig 7** e alla **Fig 8**. Il campo magnetico esterno è uniforme e diretto lungo un braccio.

32

Obbiettivi:

- 1. Riduzione rumore magnetico naturale almeno di un fattore 3
- 2. Riduzione rumore magnetico ambientale almeno di un fattore 100

Obbiettivi:

- 1. Riduzione rumore magnetico naturale almeno di un fattore 3
- 2. Riduzione rumore magnetico ambientale almeno di un fattore 100

- 1. Schermi ferromagnetici
- 2. Correnti indotte
- 3. Tecniche attive

Bibliografia:

- [1] https://www.et-gw.eu/index.php/etsensitivities
- [2] F. Amann et al. Site-selection criteria for the Einstein Telescope. Review of Scientific Instruments (2020)
- [3] Michael Coughlin et al. Measurement and subtraction of schumann resonances at gravitational-wave interferometers. Phys. Rev. D (2018)
- [4] Alessio Cirone et al. Investigation of magnetic noise in advanced virgo. Classical and Quantum Gravity (2019)
- [5] Barbara Garaventa, Federico Armato, Andrea Chincarini and Irene Fiori. *Magnetic Noise Mitigation Strategies for the Einstein Telescope Infrastructure*. Galaxies (2025)

Backup slides

Cos'è un detector di onde gravitazionali?

Fig 1b. Schema semplificato di un tipico rivelatore di onde gravitazionali.

Einstein Telescope

Forma: triangolo o doppia L

Lunghezza bracci: 10km o 15km

Profondità: 200-300m

Siti candidati: Italia (Sos Enattos, Sardegna), Olanda, Germania.

Fig 3b. Esempio di un ipotetico bilancio del rumore ambientale di ET nelle basse frequenze per ottenere la sensibilità di progetto (curva nera). Le linee tratteggiate indicano i livelli di rumore ambientale senza la necessaria mitigazione [2].

Shielding con schermi ferromagnetici:

Le torri che ospitano le masse di test sono tra le componenti più importanti da schermare. Diverse simulazioni sono state svolte utilizzando tecniche di mitigazione passiva: schermi ferromagnetici e correnti indotte [5].

Fig 4b. Shielding Factor (SF) ottenuto ricoprendo i bracci dell'interferometro in corrispondenza della torre con uno strato ferromagnetico di spessore 2 mm e permeabilità magnetica relativa di 100.000 per 1m (grafico a sinistra) e per 5m (grafico a destra). Il campo magnetico esterno è uniforme e diretto a 45 gradi rispetto ai bracci dell'interferometro [5].

"Fuga" del campo magnetico nei punti di congiunzione tra i fogli ferromagnetici:

Simulation with COMSOL Multiphysics: • 2D model	Separation Distance	Shielding Factor <u>B</u> ext=B <u>x</u>
mu-metal relative permeability: 100.000 mu-metal thickness: 2mm radius: 1m external magnetic field: uniform	no hole	125.72
Bast	0.2 mm	14.44
$\xrightarrow{\rightarrow}$	0.5 mm	9.05
\rightarrow	1 mm	6.94
\rightarrow \rightarrow	2 mm	5.68
\rightarrow \rightarrow \rightarrow	5 mm	4.65
\rightarrow \rightarrow \rightarrow	1 cm	4.05
×	2 cm	3.55

Saturazione del campo:

H [A/m]

Benefici del multi-strato:

La dura realtà ...

Tra le sorgenti di rumore magnetico ambientale troviamo il Faraday Isolator. Diverse simulazioni di schermaggio ferromagnetico, utilizzando uno strato di 2 mm ferro e uno di 2 mm di mumetal, sono state svolte.

Tra le sorgenti di rumore magnetico ambientale troviamo il Faraday Isolator. Diverse simulazioni di schermaggio ferromagnetico, utilizzando uno strato di 2 mm ferro e uno di 2 mm di mumetal, sono state svolte.

Alla fine è stato raggiunto uno shielding factor di circa 165, compatibile con la geometria del sistema [6].

Tra le sorgenti di rumore magnetico ambientale troviamo il Faraday Isolator. Diverse simulazioni di schermaggio ferromagnetico, utilizzando uno strato di 2 mm ferro e uno di 2 mm di mumetal, sono state svolte.

Alla fine è stato raggiunto uno shielding factor di circa 165, compatibile con la geometria del sistema [6].

Tuttavia, la successiva realizzazione pratica ha portato a un risultato decisamente peggiore (SF ~ 20) [7].

Tra le sorgenti di rumore magnetico ambientale troviamo il Faraday Isolator. Diverse simulazioni di schermaggio ferromagnetico, utilizzando uno strato di 2 mm ferro e uno di 2 mm di mumetal, sono state svolte.

Alla fine è stato raggiunto uno shielding factor di circa 165, compatibile con la geometria del sistema [6].

Tuttavia, la successiva realizzazione pratica ha portato a un risultato decisamente peggiore (SF ~ 20) [7].

Possibili cause:

Tra le sorgenti di rumore magnetico ambientale troviamo il Faraday Isolator. Diverse simulazioni di schermaggio ferromagnetico, utilizzando uno strato di 2 mm ferro e uno di 2 mm di mumetal, sono state svolte.

Alla fine è stato raggiunto uno shielding factor di circa 165, compatibile con la geometria del sistema [6].

Tuttavia, la successiva realizzazione pratica ha portato a un risultato decisamente peggiore (SF ~ 20) [7].

Possibili cause:

Saturazione del campo ?

Tra le sorgenti di rumore magnetico ambientale troviamo il Faraday Isolator. Diverse simulazioni di schermaggio ferromagnetico, utilizzando uno strato di 2 mm ferro e uno di 2 mm di mumetal, sono state svolte.

Alla fine è stato raggiunto uno shielding factor di circa 165, compatibile con la geometria del sistema [6].

Tuttavia, la successiva realizzazione pratica ha portato a un risultato decisamente peggiore (SF ~ 20) [7].

Possibili cause:

- Saturazione del campo ?
- "Fuga" di campo magnetico nei punti di congiunzione tra i fogli ferromagnetici ?