Ottimizzazione della risoluzione temporale del futuro calorimetro elettromagnetico di LHCb

Alberto Bellavista 10/04/2025 Università e INFN, Bologna

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Istituto Nazionale di Fisica Nucleare

Scaletta

Introduzione: l'Upgrade 2 dell'ECAL di LHCb

- Studio delle simulazioni di un modulo Piombo-Polistirene
- Analisi di dati Test Beam
- Conclusioni

<u>LHCb ECAL - Upgrade II</u>

- Attualmente: ECAL composto da moduli lacksquareShashlik
- Dose di radiazione accumulata da LHCb Upgrade 2: ~1 MGy (regione interna)
- Limite per Shashlik: 40 kGy
- L'alta luminosità richiederà:
 - Risoluzione temporale di poche decine di picosecondi
 - Resistenza alla radiazione
 - Risoluzione energetica confrontabile con quella attuale (10% termine di sampling, 1% termine constante)

Schema di un modulo Shashlik (Irina Machikhiliyan and LHCb calorimeter group. <u>https://iopscience.iop.org/article/10.1088/1742-6596/160/1/012047</u>)

Dose di radiazione attesa per la fare ad Alta Luminosità, in Gy ("Framework TDR for the LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era." https://inspirehep.net/literature/2707810)

3

LHCb ECAL - Upgrade II

- PicoCal:
 - Parte interna: Calorimetro a **Spaghetti** (SpaCal)
 - Parte esterna: Shashlik
- SpaCal: fibre scintillanti inserite in un assorbitore passivo
 - Fibre: polistirene / cristalli di granato
 - Assorbitore: **piombo (Pb)** / **tungsteno (W)**

Run 4:

- W-Poly & Pb-Poly
- Readout singolo lato

Dopo Run 4:

- W-Crystal & Pb-Poly
- Readout doppio lato
- Informazione temporale 🗸
- Se le prestazioni con readout singolo sono abbastanza buone:
 - Possibilità di utilizzarlo anche dopo Run 4 (in alcune regioni)
 - Riduzione dei costi
 - Possibilità di aumentare la granularità

Direzione del fascio

Scaletta

- Introduzione: l'Upgrade 2 dell'ECAL di LHCb
- Analisi di dati testbeam
- Conclusioni

Studio delle simulazioni di un modulo Piombo-Polistirene

<u>Tempo di arrivo di un segnale</u>

- Tempo di arrivo calcolato con l'algoritmo "Constant Fraction Discriminator" (CFD)
- Istante in cui il segnale supera una certa frazione del suo massimo
- La migliore frazione viene scelta in modo da ottimizzare la risoluzione
- Risoluzione = deviazione standard del campione dei lacksquaretempi di arrivo

https://en.wikipedia.org/wiki/Constant_fraction_discriminator

Primi risultati

- Risoluzione ottenuta con e⁻ incidenti nel centro del modulo (1 GeV e 10 GeV)
- Migliore risoluzione ad energie più alte (contributo della fotostatistica)
- Migliori risultati: PMT lenti (alto τ)

Perché?

PMT lenti sono meno sensibili alle fluttuazioni longitudinali degli sciami elettromagnetici nel rivelatore

Simulazione Hybrid MC (LHCb TDR-024)

Resolution vs tau

Risultati ottenuti senza simulare rumore elettronico, fluttuazioni del segnale di singolo fotoelettrone e guide di luce

Profondità degli sciami

- Profondità dello sciame e tempo di arrivo del segnale sono correlati. Per \bullet sciami più profondi:
 - ▶ I fotoni diretti arrivano prima al PMT -> Correlazione negativa

Sciame meno profondo

- Baricentro dei depositi di energia
- Fotoni riflessi
- Fotoni diretti

Sciame più profondo

Profondità degli sciami

- Profondità dello sciame e tempo di arrivo del segnale sono correlati. Per sciami più profondi:
 - ► I fotoni diretti arrivano prima al PMT —> Correlazione negativa
 - I fotoni riflessi arrivano in ritardo
 - Il tempo di arrivo (CFD) è influenzato dalla profondità dello sciame Questo bias peggiora la risoluzione temporale

Sciame meno profondo

-> <u>Correlazione positiva</u>

- Baricentro dei depositi di energia
- Fotoni riflessi
- Fotoni diretti

Profondità degli sciami

- Questo effetto è più rilevante per i PMT veloci (discriminano meglio la componente diretta da quella riflessa) Influenza la forma dei segnali -> L'algoritmo CFD non ne tiene conto
- Dipende dalla soglia CFD scelta:
 - Soglie basse rilevano principalmente i fotoni diretti Per alcune soglie le due correlazioni si cancellano a vicenda, migliorando la risoluzione finale

Simulazione Hybrid MC (<u>LHCb TDR-024</u>)

<u>Scaletta</u>

- Introduzione: l'Upgrade 2 dell'ECAL di LHCb
- Studio delle simulazioni di un modulo Piombo-Polistirene
- Analisi di dati Test Beam
- Conclusioni

ell'ECAL di LHCb n modulo Piombo-Polistirene

<u>CERN SPS (20-100 GeV)</u>

DAQ: segnali digitalizzati con il digitizer V1742 CAEN basato sulla DRS4 con 5 GS/s

Risoluzione temporale

- Modulo: SpaCal W-Poly, 4 celle, 2x2 cm² ognuna
- Fibre Kuraray SCSF-78
- Confronto tra 4 PMT
- Voltaggi dei PMT scelti per sfruttare l'intero intervallo disponibile del digitizer
- PMT più veloci (R14755U e R9880U) forniscono risoluzioni peggiori

$$\sigma_T(E) = \frac{sampl.}{\sqrt{E}}$$

Correzione dei tempi di arrivo

Le simulazioni mostrano che il tempo di salita è altamente correlato alla profondità degli sciami

È possibile sfruttarlo per rimuovere il bias

- Fit polinomiale: tempo di arrivo *t vs* tempo di salita di ogni segnale —> curva di correzione *f*
- Tempo di arrivo corretto: $\hat{t}_j = t_j f_j$
- La risoluzione temporale corretta è la deviazione standard di \hat{t}

Prima vs dopo la correzione del bias

15

Risoluzione temporale corretta

- Come atteso, correzioni più ampie per PMT veloci (R9880U and R14755U)
- Risoluzioni migliori ottenute comunque con PMT più lenti
- Qui, la migliore soglia CFD è sempre 10% o 90%

$\sigma_T(E) = \frac{sampl.}{\sqrt{E}}$

Time resolution vs energy (corrected) - SCSF-78 (blue) fibres

 $- \oplus const$.

DESY - Hamburg (1-5 GeV)

<u>**Risoluzione temporale**</u> (SpaCal W-Poly, 4 celle, 2x2 cm²)

- Confronto tra fibre diverse
- Solo le fibre con scintillazione più veloce (SCSF-78) \bullet hanno una correzione visibile
- A queste energie non c'è correzione significativa \bullet

Come cambia il bias a energie diverse?

- Energie diverse causano diverse profondità degli sciami
- Correlazione positiva (negativa) causata dai fotoni riflessi (diretti)

gli sciami toni riflessi (diretti)

<u>Confronto tra diverse soglie CFD</u>

- Per alcune soglie CFD, la distribuzione dei tempi di arrivo presenta delle code
- Effetto causato dalle fluttuazioni longitudinali degli sciami
- Comportamento simile per tutte le energie (1-5 GeV)

-5.5

<u>Scaletta</u>

- Introduzione: l'Upgrade 2 dell'ECAL di LHCb
- Studio delle simulazioni di un modulo Piombo-Polistirene
- Analisi di dati Test Beam
- Conclusioni

ell'ECAL di LHCb n modulo Piombo-Polistirene

Conclusioni

- rilevato
 - Modifica della forma dei segnali

L'algoritmo CFD non ne tiene conto

- migliorando la risoluzione
- Risoluzioni di poche decine di picosecondi ottenute

Buone capacità di misura temporale per i moduli SpaCal anche con readout singolo

- **Prossimi passi:**
 - Elettronica dedicata in fase di sviluppo
 - Test sfruttando una catena DAQ simile a quella finale

Nei moduli SpaCal con readout singolo, la profondità degli sciami influenza il tempo di arrivo

Sfruttando il tempo di salita dei segnali, è possibile rimuovere (parzialmente) questi effetti,

Grazie per l'attenzione!

ALMA MATER STUDIORUM Università di Bologna

Istituto Nazionale di Fisica Nucleare

Backup

ALMA MATER STUDIORUM Università di Bologna

Istituto Nazionale di Fisica Nucleare

- Studio della risoluzione temporale di un modulo simulato
- Elettroni di 1 GeV e 10 GeV
- Modulo SpaCal Pb + Polistirene
- Readout solo sul retro

<u>Simulazione dei PMT</u>

Impulso di singolo fotoelettrone:

$$f(t) = A \cdot t^2 \cdot e^{-t/\tau} \qquad A = \frac{R \cdot \text{gain} \cdot q_e}{\tau^3} \cdot 10^9$$

Tau = 0.1 ns (FWHM = 0.35 ns)

Tau = 2.0 ns (FWHM = 7 ns)

Risultati della simulazione

- **Risoluzione corretta** = deviazione standard dei tempi di arrivo corretti \hat{t}
- PMT veloci ricevono correzioni più ampie
- La soglia CFD ottimale può essere diversa dal caso in cui non si applica la correzione. Qui: 10% o 90%
 - A questi livelli: correlazione massima tra profondità dello sciame e tempo di arrivo
 - Correzioni massime

Best resolutions vs tau

Risultati ottenuti senza simulare rumore elettronico, fluttuazioni del segnale di singolo fotoelettrone e guide di luce

Come cambia il bias a energie diverse?

- Energie diverse causano diverse profondità degli sciami
- Correlazione positiva (negativa) causata dai fotoni riflessi (diretti)

gli sciami toni riflessi (diretti)

Prima della correzione

Dopo la correzione

Confronto tra diverse soglie CFD

- Per alcune soglie CFD, la distribuzione dei tempi di arrivo presenta delle code
- Effetto causato dalle fluttuazioni longitudinali degli sciami
- Comportamento simile per tutte le energie (1-5 GeV)

tempi di arrivo presenta delle code li degli sciami 1-5 GeV)

Confronto tra soglie CFD - DESY

Confronto tra soglie CFD - DESY

34

Segnale di singolo fotoelettrone

PMT	FWHM (ns)	Tempo di salita 10-90 % (ns)
R7600U	3.2	1.6
R9880U	1.25	0.57
R14755U	0.68	0.4
R11187	/	/

Valori dati dal produttore (Hamamatsu)

Quantum efficiency

	SCSF-78	3HF
R7600U	12%	12%
R9880U	15%	18%
R14755U	26%	10%
R11187	/	/

Valori dati dal produttore (Hamamatsu)

Tempo di salita misurato

Fibre	Tempo di salita 10-90 (ns), E = 1 GeV
3HF	2.5 ns
Luxium	3.0 ns
SCSF-78	1.9 ns
3HF+Bundle	2.5 ns

<u>Modello di risoluzione temporale</u>

Risoluzione temporale in funzione del numero di fotoni che arrivano al PMT: lacksquare

$$\sigma_T(N_{ph}) = \frac{a}{N_{ph}} \bigoplus \frac{b}{\sqrt{N_{ph}}} \bigoplus C$$

• Assumendo linearità: $N_{ph} \propto E$ (energia del e^- incidente)

$$\sigma_T(E) =$$

- Termine di rumore
- Termine di sampling
- Termine costante

$$\frac{a'}{E} \oplus \frac{b'}{\sqrt{E}} \oplus c'$$

<u>Modello di risoluzione temporale</u>

- **Termine di rumore:** causato dalle fluttuazioni dovute al rumore elettronico
- PMT più veloci (tempo di salita più rapido) causano termini di rumore minori
- Con l'algoritmo CFD, può essere stimato come \bullet

 $\sigma_{T_{noise}}$

Sottraendolo in quadratura, la risoluzione in funzione dell'energia diventa: lacksquare

$$=\sqrt{\frac{2}{3}}\frac{\sigma_n}{dA/dt}$$

- σ_n = std. dev. del rumore elettronico
- A = ampiezza del segnale

$$=\frac{b'}{\sqrt{E}}\oplus c'$$

Ref: Eric Delagnes, June 2016, "What is the theoretical time precision achievable using a dCFD algorithm?"

