Prima osservazione del decadimento $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ con l'esperimento NA62

Ilaria Rosa, Scuola Superiore Meridionale (a nome della collaborazione NA62) 11 aprile 2025 IFAE 2025, Cagliari

$K \rightarrow \pi \nu \bar{\nu}$ come test del Modello Standard

SM: diagrammi Z-penguin & box

• Teoria molto pulita \Rightarrow predizioni SM altamente precise:

- Dominato da contributi a corta distanza.
- Elementi matrice adronica estratti dai decadimenti $\mathscr{B}(K \to \pi^0 \mathscr{C}^+ \nu_{\mathscr{C}})$ attraverso una rotazione di isospin.

Decadimento	SM Branching Ratio [1]	SM Branching Ratio [2]	Stato dell'arte	sperimentale
$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6 \pm 4.0) \times 10^{-11}$	NA62 16–18
$K_L \to \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 2 \times 10^{-9}$	KOTO (2021 data)
	Recent SM calculations [1: <u>Buras et al. EPJC 82 (2022) 7, 615]</u> [2: <u>D'Ambrosio et al. JHEP 09 (2022) 148]</u>			
	(Differences in SM calculations from choice of CKM parameters: see [<u>Eur.Phys.J.C 84 (2024) 4, 377]</u>)			

[arXiv:2109.11032]

[JHEP06 (2021) 093] [JHEP02(2025)191]

2009-20 R&D del de Installazi

Scala temporale esperimento NA62:

Una fabbrica di kaoni al CERN

- Fascio dal SPS: **protoni a 400 GeV/c** su bersaglio di Be
 - 75 GeV/c fascio secondario di adroni (70% π , 24% p e **6%** K)
 - Decadimento in volo: decadimenti dei kaoni in una regione lunga 60 m
- Lo scopo principale di NA62 è studiare il processo FCNC $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Teoria

$$\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.60 \pm 0.42) \times 10^{-11}$$

NA62

 $\mathscr{B}_{2016-2022}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.0}_{-2.7} |_{stat\,-1.3} |_{syst}) \times 10^{-11}$

014	2016-2018	2019-2021	2021-2026	
etector	Run1	LS2 upgrade	Run 2	

Panoramica del detector

 \blacksquare Disegnato & ottimizzato per lo studio del decadimento $K^+ \rightarrow \pi^+ \nu \bar{\nu}$:

- •Tracciamento delle particelle: particelle del fascio (GTK) & tracce downstream (STRAW)
- •**PID:** K^+ KTAG, π^+ RICH, Calorimetri (LKr, MUV1,2), MUV3 (μ detector)
- •Sistemi di veto: CHANTI (interazioni con il fascio), LAV, LKr, IRC, SAC (γ)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ con l'esperimento NA62

Strategia NA62

- Tag K^+ e misura impulso.
- Identificazione π^+ e misura impulso.
- Match $K^+ \in \pi^+$ temporale e formazione vertice.
 - Determinatione $m_{miss}^2 = (P_K P_\pi)^2$
- Reiezione di qualunque attività extra.

Punti chiave della performance di NA62

- $\mathcal{O}(100) ps$ timing tra rivelatori
- $\mathcal{O}(10^4)$ soppressione cinematica dei fondi
- $> 10^7$ rejezione di muoni
- > 10^7 rejezione di π^0 da decadimenti $K^+ \rightarrow \pi^+ \pi^0$

Decay mode	Branching Ratio [PDG]	
$K^+ \to \mu^+ \nu_\mu$	$(63.56 \pm 0.11)\%$	
$K^+ \to \pi^+ \pi^0$	$(20.67 \pm 0.08)\%$	
$K^+ \to \pi^+ \pi^+ \pi^-$	$(5.583 \pm 0.024)\%$	
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-5}$	
$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	[S
	Buras et al. EPJC 82 (2022) 7, 615	

Numero efficace di decadimenti K^+ , N_K

Canale di normalizzazione: $K^+ \rightarrow \pi^+ \pi^0$, range di impulso $p \in [15,45]$ GeV/c.

Numero di eventi SM attesi

(Per comparare con il precedente risultato viene usato $\mathscr{B}_{\pi\nu\bar{\nu}}^{SM} = 8.4 \times 10^{-11}$ [JHEP 11 (2015) 166], ma il risultato è indipendente da questa scelta)

Signal sensitivity

Single event sensitivity

(Branching ratio corrispondente ad un evento atteso)

Risultati della signal sensitivity

$$N_{K} = \frac{N_{\pi\pi} D_{0}}{\mathscr{B}_{\pi\pi} A_{\pi\pi}} \qquad \mathscr{B}_{SES} = \frac{1}{N_{K} \varepsilon_{RV} \varepsilon_{trig} A_{\pi\nu\bar{\nu}}}$$

$N_{\pi\pi}$	Normalisation $K^+ \to \pi^+ \pi^0$	$2.0 imes 10^8$
$A_{\pi\pi}$	Normalisation acceptance	(13.410 ± 0.005)
N_K	Effective K^+ decays	$2.9 imes10^{12}$
$A_{\pi u ar{ u}}$	Signal acceptance	$(7.6\pm0.2)\%$
$arepsilon_{trig}$	Trigger efficiency	$(85.9 \pm 1.4)\%$
$arepsilon_{RV}$	Random veto efficiency	$(63.6 \pm 0.6)\%$
\mathcal{B}_{SES}	Single event sensitivity	$(0.84 \pm 0.03) \times 10^{-10}$

Le tabelle mostrano gli integrali (15–45 GeV/c, 2021+22).

* Accettanze valutate a intensità 0 (dipendenza contenuta in ε_{RV})

 $N_{\pi\nu\bar{\nu}}^{exp} = \frac{\mathscr{B}_{\pi\nu\bar{\nu}}^{SM}}{\mathscr{B}_{SES}}$ Assumendo $\mathscr{B}_{\pi\nu\bar{\nu}}^{SM} = 8.4 \times 10^{-11}$: 2021–22: $N_{\pi\nu\bar{\nu}} = 10.00 \pm 0.34$ c.f. 2016–18 : $N_{\pi\nu\bar{\nu}} = 10.01 \pm 0.42$ Raddoppiati gli eventi attesi includendo i dati 21–22.

Significativi miglioramenti nell'incertezza della SES:

- → vecchia: 6.3% → nuova: 3.5%. Grazie a:
 - cancellazioni nell'efficienza di trigger
 - miglioramenti nelle procedure per la valutazione delle accettante e di ε_{RV}

Regioni di background & stime del background

 $N_{bg}(K^+ \to \pi^+ \pi^0(\gamma)) = 0.83 \pm 0.05$

Background dalle code cinematiche ricostruite erroneamente in m_{miss}^2

Numero di eventi che passano la selezione di segnale nelle regioni di background

Eventi di controllo nella regione di segnale

 $N_{bg} = N_{bkgR} \cdot f_{tail} = N_{bkgR}$

Kinematic tail fraction: misurata in campioni di controllo

Eventi di controllo nella regione di background

 $N_{bg}(K^+ \to \mu^+ \nu) = 0.9 \pm 0.2$

 $N_{bg}(K^+ \to \pi^+ \pi^+ \pi^-) = 0.11 \pm 0.03$

Valutazione upstream background

$$N_{bg} = \sum_{i} N_i f_{cda} P_i^{match}$$

$$Upstream Reference Sample:$$

$$N \qquad Upstream Reference Sample:$$

$$Selezione di segnale con taglio sul CDA$$

$$invertito (CDA>4mm)$$

$$f_{cda} \qquad Fattore di scala: cattivo CDA \rightarrow buono CDA$$

$$P_{match} \qquad Probabilità di passare matching K^+ - \pi^+$$

N = 51fornisce la nomalizzazione Calcolati usando bin (i) di $(\Delta T_+, N_{GTK})$ $f_{CDA} = 0.20 \pm 0.03$ dipende solo dalla geometria [Procedura completamente $< P_{match} > = 73\%$ dipende da ($\Delta T_+, N_{GTK}$) data-driven]

 N_{bg} (Upstream) = 7.4^{+2.1}_{-1.8}

➡Invertire e allentare i veto upstream per arricchire i campioni con differenti meccanismi:

⇒ interaction-enriched: Val1,2,7,8

⇒ accidental-enriched: Val3,4,5,6,9,10

tutti indipendenti.

→Valori attesi e osservati sono in buon accordo.

9

Regioni di segnale

Dati 2021-22

Segnali SM attesi, $N_{\pi\nu\bar{\nu}}^{SM} \approx 10$ Background atteso, $N_{bg} = 11.0^{+2.1}_{-1.9}$ Osservati, $N_{obs} = 31$

proiezione 1D differential background predictions & SM signal expectation [non è un fit]:

Risultati: dati 2021–2022

Misura del $\mathscr{B}_{\pi\nu\bar{\nu}}$ e del 68% (1 σ) intervallo di confidenza usando un test statistico profile likelihood ratio $q(\theta)$

Uso di 6 differenti categorie di impulso

11

Esperimento BNL E787/E949 [Phys.Rev.D 79 (2009) 092004]

 $\mathscr{B}_{\pi\nu\bar{\nu}}^{16-18} = (10.6^{+4.1}_{-3.5}) \times 10^{-11}$ <u>[JHEP 06 (2021) 093</u>] $\mathscr{B}_{\pi\nu\bar{\nu}}^{21-22} = (16.0^{+5.0}_{-4.5}) \times 10^{-11}$ $\mathscr{B}_{\pi\nu\bar{\nu}}^{16-22} = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$

- ► I risultati di NA62 sono consistenti
- Signal yield aumentata del 50%
- ► Il valore centrare è aumentato (ora $1.5-1.7\sigma$ oltre il SM)
- Incertezza relativa diminuita: da 40% a 25%
- Ipotesi Bkg-only rigettata con una significanza Z>5

Risultati in sintesi

Conclusioni

- ► Nuovo studio del decadimento $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ usando il dataset NA62 2021—22:
 - → Signal yield per SPS spill migliorata del 50%.

→
$$N_{bg} = 11.0^{+2.1}_{-1.9}$$
 , $N_{obs} = 31$

$$\Rightarrow \mathscr{B}_{21-22}(K^+ \to \pi^+ \nu \bar{\nu}) = (16.0^{+5.0}_{-4.5}) \times 10^{-11} = \left(16.0 \left(^{+4.8}_{-4.2}\right)_{\text{stat}} \begin{bmatrix}^{+1.4}_{-1.3}\end{bmatrix}_{\text{syst}}\right) \times 10^{-11}$$

Combinando con i dati 2016—18 per un risultato completo 2016—22:

→
$$N_{bg} = 18^{+3}_{-2}$$
 , $N_{obs} = 51$ (usando 9+6 categories pe

$$\Re_{16-22}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.3}_{-2.9}) \times 10^{-11} = (13.0 \left(^{+3.0}_{-2.7}\right)_{\text{stat}} \begin{bmatrix}^{+1.3}_{-1.2}\end{bmatrix}_{\text{syst}}) \times 10^{-11}$$

→ Ipotesi background-only rigettata con una significanza Z>5.

▶ Prima osservazione del decadimento $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: BR consistente con le predizioni SM entro 1.7 σ

Necessaria l'analisi dell'intero data-set NA62 per chiarire l'accordo o la tensione con SM.

NA62 collezionerà dati fino al LS3 che saranno analizzati in futuro

er l'estrazione del BR)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ con i dati 2016–18

Data-taking year	[Reference]	N_{bg}	$N^{SM,exp}_{\pi uar{ u}}$	Nobs
2016	[PLB 791 (2019) 156]	$0.152\substack{+0.093\\-0.035}$	0.267 ± 0.020	1
2017	[JHEP 11 (2020) 042]	1.46 ± 0.33	2.16 ± 0.13	2
2018	$[JHEP \ 06 \ (2021) \ 093]$	$5.42\substack{+0.99 \\ -0.75}$	7.58 ± 0.40	17
2016 - 18	[JHEP 06 (2021) 093]	$7.03\substack{+1.05 \\ -0.82}$	10.01 ± 0.42	20

Combinatione statistica: $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$

$$\overline{D} = \left(10.6^{+4.0}_{-3.4} \right|_{stat} \pm 0.9_{syst} \right) \times 10^{-11} \ a \ 68 \ \% \ CL$$

Nell'ipotesi solo background: $p = 3.4 \times 10^{-4}$ significanza= 3.4σ .

Riassunto upgrade NA62

- Nuovi rivelatori (installati durante LS2):
 - GTK3 (Kaon beam tracker) & riarrangiamento GTK achromat (GTK2 upstream rispetto allo scraper).
 - Nuovi veto upstream (VetoCounter) & veto hodoscope (ANTIO) upstream rispetto al volume fiduciale.
 - Detector di veto addizionali (HASC2) alla fine della beam-line.
- Intensità aumentata del ~ 35% rispetto al 2018 [$450 \rightarrow 600$ MHz].
- Miglioramenti nella configurazione del trigger.

Nuovi rivelatori installati nel 2021

Vincoli cinematici e regioni di segnale

 $\mathcal{O}(10^4)$ soppressione cinematica dei fondi

 π^+ range di impulso: 15-45 GeV/c

Strategia dell'analisi

Trigger

- Minimum Bias: $K^+ \rightarrow \mu^+ \nu$
- Normalizzazione: $K^+ \rightarrow \pi^+ \pi^0$
- Segnale: candidati $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Selezione

- Normalizzazione $K^+ \rightarrow \pi^+ \pi^0$: 1 sola traccia downstream; identificata come π^+ ; $K^+ \pi^+$ matching (spaziale & temporale); veto upstream.
- **Segnale** candidati $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: selezione normalizzazione + full photon and detector multiplicity cuts (rigetta tutte le extra activity).

- ➡ RICH multiplicity (tempo di referenza)
- ➡ Segnale nei CHODs
- → Nessun segnale nel MUV3 (μ veto)
- → Tag K^+ (≥ 5 settori KTAG)
- → < 40 GeV nell'LKr ($\pi^0/\gamma/e$ veto)
- → LAV veto (downstream rispetto al vertice).

Condizioni comuni

+ aggiunta di condizioni

Fondo dalle code cinematiche

 $K^+ \to \pi^+ \pi^0(\gamma)$

 $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ Use MC to measure f_{tail}

12

Riassunto dei background

Riassunto background

$K^+ \to \pi^+ \pi^0(\gamma)$	0.83 ± 0.05	
$K^+ \to \pi^+ \pi^0$	0.76 ± 0.04	\mathcal{B}_{SF}
$K^+ \to \pi^+ \pi^0 \gamma$	0.07 ± 0.01	
$K^+ \to \mu^+ \nu(\gamma)$	1.70 ± 0.47	
$K^+ \to \mu^+ \nu$	0.87 ± 0.19	Assum
$K^+ \to \mu^+ \nu \gamma$	0.82 ± 0.43	2021–2
$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03	c.f. 201
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.89^{+0.34}_{-0.28}$	
$K^+ \to \pi^0 \ell^+ \nu$	< 0.001	$\blacktriangleright N^{SM}_{\pi\nu\bar{\nu}}$
$K^+ \to \pi^+ \gamma \gamma$	0.01 ± 0.01	C
Upstream	$7.4^{+2.1}_{-1.8}$	Sens
Total	$11.0^{+2.1}_{-1.9}$	⇒S

Signal sensitivity

per SPS spill: 2.5×10^{-5} nel 2022

t.f. 1.7×10^{-5} in 2018. \Rightarrow signal yield aumentata del 50%.

sitivity per BR ~ $\sqrt{S+B}/S = 0.5$

Simile ma migliorata rispetto all'analisi 2018 (considerando la stessa quantità di dati).

Decadimenti radiativi: $K^+ \rightarrow \pi^+ \pi^0 \gamma \& K^+ \rightarrow \mu^+ \nu \gamma$

- $K^+ \rightarrow \pi^+ \pi^0 \gamma$: included with "kinematic tails" estimation.
 - Suppression: photon vetos, rejection with additional γ is 30x stronger.
 - Estimation: MC + measured single photon rejection efficiency : $N_{bg}(K^+ \rightarrow \pi^+ \pi^0 \gamma) = 0.07 \pm 0.01$
 - Validation: m_{miss}^2 control regions (CR1,2 see later)
- $K^+ \rightarrow \mu^+ \nu \gamma$: not included in "kinematic tails" estimation if γ overlaps μ^+ at LKr (leading to misID as π^+)
 - Suppression: based on $(P_K P_\mu P_\gamma)^2$ and E_γ with $\gamma = LKr$ cluster (mis)associated to muon.
 - Necessary for 2021—22 data, since Calorimetric PID degraded at higher intensities.
 - Estimation: min. Bias data control sample with signal in MUV3 : $N_{bg}(K^+ \rightarrow \mu^+ \nu \gamma) = 0.8 \pm 0.4$
 - Validation: data sample without $K^+ \rightarrow \mu^+ \nu \gamma$ veto and PID = "less pion-like" (Calo BDT bins below π^+ bin).

$K \rightarrow \pi \nu \bar{\nu}$ e fisica oltre il Modello Standard

- Correlations between BSM contributions to BRs of K^+ and K_L modes [JHEP 11 (2015) 166].
 - Must measure both to discriminate between BSM scenarios.
- Correlations with other observables (ε'/ε , ΔM_B , B-decays) [JHEP 12 (2020) 097][PLB 809 (2020) 135769].
- → Green: CKM-like flavour structure
 - Models with Minimal Flavour Violation
- Blue: new flavour-violating interactions where LH or RH currents dominate
 - \rightarrow Z' models with pure LH/RH couplings
- Red: general NP models without above constraints
- Grossman-Nir Bound: model-independent relation

[PLB 398 (1997) 163-168]

$$\frac{\mathscr{B}(K_L \to \pi^0 \nu \bar{\nu})}{\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})} \frac{\tau_{K^+}}{\tau_{K_L}} \lesssim 1$$
$$\Rightarrow \mathscr{B}(K_L \to \pi^0 \nu \bar{\nu}) \lesssim 4.3\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$$

Leptoquarks [EPJ.C 82 (2022) 4, 320], Interplay between CC and FCNC [JHEP 07 (2023) 029], NP in neutrino sector [EPJ.C 84 (2024) 7, 680] and additional scalar/tensor contributions [JHEP 12 (2020) 186][arXiv:2405.06742] ...

$\mathscr{B}_{\pi\nu\bar{\nu}}^{16-22} = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$

- risultati di NA62 sono consistenti tra loro
- Il valore centrare è aumentato (ora $1.5-1.7\sigma$ oltre il MS)
- Incertezza relativa diminuita: da 40% a 25%
- Ipotesi Bkg-only rigettata con una significata Z>5

Risultati in sintesi

