Contaminazione da Nuova Fisica in misure di luminosità di precisione a futuri acceleratori e^+e^-

Incontri di Fisica delle Alte Energie 2025 10 Aprile 2025, Cagliari

Francesco P. Ucci

in collaboration with M. Chiesa C. L. Del Pio G. Montagna O. Nicrosini F. Piccinini

Introduzione

Misure di sezioni d'urto

$$\sigma_{e^+e^- \to X}^{\exp} = \frac{1}{\epsilon} \frac{N_{e^+e^- \to X}^{\exp}}{L}$$

Misure di sezioni d'urto

$$\sigma_{e^+e^- \to X}^{\exp} = \frac{1}{\epsilon} \frac{N_{e^+e^- \to X}^{\exp}}{L}$$

Deve essere **piccolo** per sfruttare la statistica

Incontri di Fisica delle Alte Energie 2025

Misure di sezioni d'urto

$$\sigma_{e^+e^- \to X}^{\exp} = \frac{1}{\epsilon} \frac{N_{e^+e^- \to X}^{\exp}}{L}$$

Quantità sensibili alle **Higgs/Top/EW Factories**

Jadach S., Nicrosini O. et al CERN Report 96-01 Focus Topic ECF arxiv/2401.07564

Errore sulla luminosità

 $\frac{\delta L}{L}$

Deve essere **piccolo** per sfruttare la statistica

Incontri di Fisica delle Alte Energie 2025

$$L = \int \mathscr{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

Ai collider di leptoni la luminosità è misurata attraverso un processo di controllo

$$L = \int \mathscr{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

Ai collider di leptoni la luminosità è misurata attraverso un **processo di controllo**

$$L = \int \mathscr{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

Ai collider di leptoni la luminosità è misurata attraverso un processo di controllo

$$L = \int \mathscr{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

Ai collider di leptoni la luminosità è misurata attraverso un processo di controllo

A LEP I il processo utilizzato era il Bhabha Scattering a Piccolo Angolo (SABS)

$$e^+e^- \rightarrow e^+e^-$$

Accettanza tra 1-5 gradi

$$L = \int \mathscr{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

Ai collider di leptoni la luminosità è misurata attraverso un processo di controllo

A LEP I il processo utilizzato era il Bhabha Scattering a Piccolo Angolo (SABS)

$$e^+e^- \rightarrow e^+e^-$$

Accettanza tra 1-5 gradi

$$L = \int \mathscr{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

Ai collider di leptoni la luminosità è misurata attraverso un **processo di controllo**

A LEP I il processo utilizzato era il Bhabha Scattering a Piccolo Angolo (SABS)

$$e^+e^- \rightarrow e^+e^-$$

Accettanza tra 1-5 gradi

Errore	Richieste per il processo	LEP I	FCC/CE
		OPAL Collaboration arXiv: hep-ex/9910066	
$\frac{\delta L}{L}$		< 10 ⁻³	< 10
II			
$\delta\epsilon_{\rm exp}$	Processo con poco background e misurabile	$\simeq 3.4 \times 10^{-4}$	$\simeq 10^{-1}$
$\epsilon_{\rm exp}$	ad alta precisione		
\oplus			
δN_0	$\sigma \simeq \mathcal{O}(10^2 - 10^3 \mathrm{nb})$	$\simeq 3 \times 10^{-4}$	$ < 10^{-1}$
N_0	Sezione d'urto grande		
\oplus			
$\frac{\delta \sigma_0^{\mathrm{th}}}{\sigma_0^{\mathrm{th}}}$	$\sigma^{(n)} = \left(\frac{\alpha}{\pi}\right)^n \log^n \frac{Q^2}{m_e^2}$	$\simeq 3.7 \times 10^{-4}$	< 10-
	Calcolabile ad alta precisione	Phys.Lett.B 803 (2020)	

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

2018

Fotoniche

 \sim

 $\mathcal{O}\left(\alpha^{2}L \oplus \alpha^{3}L^{3}\right)$

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

)

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242 G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

Fotoniche

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$
Il calcolo di emissioni di fotoni aggiuntivi è
essenziale per una predizione fisica

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$
La sezione d'urto riceve
contributi logaritmici
Previsto

$$\mathcal{O} (\alpha^2 L \oplus \alpha^3 L^2)$$

$$\mathcal{O} (\alpha^3 L^2 \oplus \alpha^4 L^2)$$

Incontri di Fisica delle Alte Energie 2025

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242 G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

Fotoniche

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$
Il calcolo di emissioni di fotoni aggiuntivi è
essenziale per una predizione fisica

$$L = \ln \frac{Q^2}{m_c^2} - 1 \simeq \mathcal{O}(10)$$
La sezione d'urto riceve
contributi logaritmici
Previsto

$$\mathcal{O}(\alpha^2 L \oplus \alpha^3 L \oplus \alpha^4 L \oplus$$

francesco.ucci@pv.infn.it

Incontri di Fisica delle Alte Energie 2025

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di Nuova Fisica?

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di Nuova Fisica?

Modello Standard

La precisione richiesta dai futuri acceleratori si raggiunge nel MS con le correzioni radiative

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di Nuova Fisica?

Modello Standard

La precisione richiesta dai futuri acceleratori si raggiunge nel MS con le correzioni radiative

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di **Nuova Fisica?**

Modello Standard

La precisione richiesta dai futuri acceleratori si raggiunge nel MS con le correzioni radiative

La Nuova Fisica può interferire con il MS. A che livello di precisione?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

Nuova Fisica Leggera

Se la NF è leggera dobbiamo specificare spin e interazione

Nuova Fisica Leggera

(Pseudo)scalare

$$\mathscr{L}_{\mathrm{ALPs}}^{a} = \frac{1}{4} g_{a\gamma\gamma}(F_{\mu\nu}\tilde{F}^{\mu\nu})a + g_{aee}(\bar{e}\,i\gamma_{5}e)a$$

BaBar Phys. Rev. Lett. 119, 131804 (2017)

NA64 arXiv:2102.01885

 $g_{a\gamma\gamma} \simeq 2 \times 10^{-4} \,\mathrm{GeV^{-1}}$

 $(g_{aee}, m_a) \simeq (3 \times 10^{-3}, 1 \, \text{GeV})$

Highly suppressed, $\sigma(e^+e^- \rightarrow e^+e^-a) \sim sg^2_{a\gamma\gamma}$

Se la NF è leggera dobbiamo specificare spin e interazione

Nuova Fisica Leggera

(Pseudo)scalare

$$\mathscr{L}_{\mathrm{ALPs}}^{a} = \frac{1}{4} g_{a\gamma\gamma}(F_{\mu\nu}\tilde{F}^{\mu\nu})a + g_{aee}(\bar{e}\,i\gamma_{5}e)a$$

BaBar Phys. Rev. Lett. 119, 131804 (2017)

NA64 arXiv:2102.01885

 $g_{a\gamma\gamma} \simeq 2 \times 10^{-4} \,\mathrm{GeV^{-1}}$

 $(g_{aee}, m_a) \simeq (3 \times 10^{-3}, 1 \, \text{GeV})$

Highly suppressed, $\sigma(e^+e^- \rightarrow e^+e^-a) \sim sg_{a\gamma\gamma}^2$

Se la NF è leggera dobbiamo specificare spin e interazione

Vector + Axial Vector

$$\mathscr{L}_{\text{Axions}}^{a} = g'_{V} \left(\bar{e} \, \gamma^{\mu} \, e \right) V_{\mu} + g'_{A} \bar{e} \left(\gamma^{\mu} \gamma_{5} \right) e \, V_{\mu}$$

NA64 arXiv:2102.01885

$$(g'_V, M_V) \simeq (3 \times 10^{-4}, 1 \,{\rm GeV})$$

 $\frac{\sigma_{\text{Dark}}}{10^{-6}} \le 10^{-6}$ $\sigma_{
m SM}$

Il contributo da NF leggera è **trascurabile**

Il modo più completo di considerare effetti di NP pesante è la Teoria Effettiva del Modello Standard (SMEFT)

$$+\sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} \hat{O}_{i}^{(6)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

 $\hat{O}_{:}^{(6)}$

Operatori con gli stessi campi e simmetrie del MS

7

Il modo più completo di considerare effetti di NP pesante è la Teoria Effettiva del Modello Standard (SMEFT)

Deviazioni dei parametri di input e degli accoppiamenti

I. Brivio arXiv:2012.11343

$$g = g_{\rm SM} + \Delta g$$

$$+\sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} \hat{O}_{i}^{(6)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

 $\hat{O}^{(6)}_{.}$

Operatori con gli stessi campi e simmetrie del MS

7

Il modo più completo di considerare effetti di NP pesante è la Teoria Effettiva del Modello Standard (SMEFT)

Deviazioni dei parametri di input e degli accoppiamenti

I. Brivio arXiv:2012.11343

$$g = g_{\rm SM} + \Delta g$$

$$+\sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} \hat{O}_{i}^{(6)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

Operatori con gli stessi **campi** e **simmetrie** del MS

Nuovi vertici di interazione

$$\mathscr{L}_{\text{eff}} \in \mathscr{L}_{\text{SMEFT}}^{4f} = \sum_{ij} \frac{C_{ij}}{\Lambda_{\text{NP}}^2} (e_i \gamma^{\mu} e_i) (e_j \gamma_{\mu} e_j) (e_j \gamma_$$

Operatori a 4 fermioni assenti nel MS Analogo alla *Teoria di Fermi*

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

$$\sigma_i^{(6)}$$
 È l'interferenza tra SM e SMEFT

Ipotesi di Lavoro

SM completo

 $\mathcal{O}(\Lambda_{\mathrm{NP}}^{-2})$

 $\sigma^{\gamma} + \sigma^{Z} + \sigma^{\gamma Z}$

Dimensione 6

$$\left(\mathscr{M}^{\dagger}_{\mathrm{SM}}\mathscr{M}^{(6)}\right)_{\mathrm{LC}}$$

$$\mathcal{O}\left(\frac{\alpha}{\pi}\ln\frac{\Lambda_{\rm NP}^2}{|t|}\right) \sim 10\%$$

Approssimazione LO

Le correzioni NLO si comportano come la QED

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

Ipotesi di Lavoro

SM completo

 $\mathcal{O}(\Lambda_{\rm NP}^{-2})$

 $\sigma^{\gamma} + \sigma^{Z} + \sigma^{\gamma Z}$

Dimensione 6

$$\left(\mathscr{M}^{\dagger}_{\mathrm{SM}}\mathscr{M}^{(6)}\right)_{\mathrm{LC}}$$

 $\mathcal{O}\left(\frac{\alpha}{\pi}\ln\frac{\Lambda_{\text{NP}}^2}{|t|}\right) \sim 10\%$ Le correzioni NLO si comportano come la QED

Approssimazione LO

Fit Globale dei dati di LEP + Flavour $\Lambda_{\rm NP} = 1 \,{\rm TeV}$

A. Falkowski et al. arXiv:1706.03783

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

Ipotesi di Lavoro

SM completo

 $\mathcal{O}(\Lambda_{\rm NP}^{-2})$

Dimensione 6

$$\left(\mathscr{M}^{\dagger}_{\mathrm{SM}}\mathscr{M}^{(6)}\right)_{\mathrm{LC}}$$

 $\sigma^{\gamma} + \sigma^{Z} + \sigma^{\gamma Z}$

 $\mathcal{O}\left(\frac{\alpha}{\pi}\ln\frac{\Lambda_{\text{NP}}^2}{|t|}\right) \sim 10\%$ Le correzioni NLO si comportano come la QED

Approssimazione LO

Fit Globale dei dati di LEP + Flavour $\Lambda_{\rm NP} = 1 \,{\rm TeV}$

A. Falkowski et al. arXiv:1706.03783

Contributo trascurabile, shift ben costretti

Nuova Fisica Pesante: Risultati

$$(\delta \pm \Delta \delta)_{\text{SMEFT}} = \frac{1}{\sigma_{\text{SM}}} \left(\sigma^{(6)} \pm \sqrt{\sum_{ij} \sigma_i^{(6)} V_{ij} \sigma_j^{(6)}} \right)$$

Nuova Fisica Pesante: Risultati

Sezione d'urto totale

Exp.	$[heta_{\min}, heta_{\max}]$	$\sqrt{s} \; [\text{GeV}]$	$(\delta\pm\Delta\delta)_{ m SMEFT}$	ΔI
FCC	$[3.7^{\circ}, 4.9^{\circ}]$	$91 \\ 160 \\ 240 \\ 365$	$(-4.2 \pm 1.7) \times 10^{-5}$ $(-1.3 \pm 0.5) \times 10^{-4}$ $(-2.9 \pm 1.2) \times 10^{-4}$ $(-6.7 \pm 2.7) \times 10^{-4}$	< 10
ILC	$[1.7^{\circ}, 4.4^{\circ}]$	$\begin{array}{c} 250 \\ 500 \end{array}$	$(-2.5 \pm 0.9) \times 10^{-4}$ $(-4.9 \pm 1.9) \times 10^{-4}$	< 10
CLIC	$[2.2^{\circ}, 7.7^{\circ}]$	$\begin{array}{c} 1500\\ 3000 \end{array}$	$(-9.7 \pm 3.9) \times 10^{-3}$ $(-4.2 \pm 1.7) \times 10^{-2}$	< 10

Sezione d'urto differenziale

Nuova Fisica Pesante: Risultati

Sezione d'urto totale

Exp.	$[heta_{\min}, heta_{\max}]$	$\sqrt{s} \; [\text{GeV}]$	$(\delta \pm \Delta \delta)_{ m SMEFT}$	ΔI
		91	$(-4.2 \pm 1.7) \times 10^{-5}$	< 10
FCC	$[3.7^{\circ}, 4.9^{\circ}]$	160	$(-1.3 \pm 0.5) \times 10^{-4}$	
	L , J	240	$(-2.9 \pm 1.2) \times 10^{-4}$	1(
		365	$(-6.7 \pm 2.7) \times 10^{-4}$	
ПС	[1 7 ° / /°]	250	$(-2.5\pm0.9) imes10^{-4}$	~ 1(
ILC	$\begin{bmatrix} 1.7 & .4.4 \end{bmatrix}$	500	$(-4.9 \pm 1.9) \times 10^{-4}$	< 10
	$[0, 0^{\circ}, 7, 7^{\circ}]$	1500	$(-9.7 \pm 3.9) \times 10^{-3}$	~ 1(
	[2.2 ,1.1]	3000	$(-4.2 \pm 1.7) \times 10^{-2}$	< 10

Sezione d'urto differenziale

$$\frac{L/L}{0^{-4}}$$

$$(\delta \pm \Delta \delta)_{\text{SMEFT}} = \frac{1}{\sigma_{\text{SM}}} \left(\sigma^{(6)} \pm \sqrt{\sum_{ij} \sigma_i^{(6)} V_{ij} \sigma_j^{(6)}} \right)$$

$$\frac{1}{0^{-3}}$$

$$\int_{\text{CONTRIBUTE IN INVERSIONAL INV$$

→

Sommario

$$\overrightarrow{C}_{4f} = \{C_{ll}, C_{le}, C_{ee}\}$$

l coefficienti a 4 fermioni **impattano** sulla luminosità

Costringere le interazioni di contatto usando il LABS

Usare le asimmetrie del LABS

$\Delta C_{\mathrm{HLLHC}}$	HL-LHC non migliorerà i bound in modo significativo
C = 0	Ipotesi di nessuna scoperta di NP

Incontri di Fisica delle Alte Energie 2025

Usare le asimmetrie del LABS

$\Delta C_{\mathrm{HLLHC}}$	HL-LHC non migliorerà i bound in modo significativo
C = 0	Ipotesi di nessuna scoperta di NP

Asimmetrie $\theta \in [40, 140] \deg$ Large Angle Bhabha Scattering (LABS)

$$A_{ab} = \frac{N_a - N_b}{N_a + N_b} \qquad \{a,$$

 $\{a, b\} = \{F, B\}, \{L, R\}, \{\uparrow, \downarrow\}$

La predizione teorica dipende dai C che possono essere fittati

$$A_{ab}^{\text{th}} = A_{ab}^{\text{SM}} \left\{ 1 + \frac{(\sigma_a - \sigma_b)^{(6)}}{(\sigma_a - \sigma_b)_{\text{SM}}} - \frac{(\sigma_a + \sigma_b)^{(6)}}{(\sigma_a + \sigma_b)_{\text{SM}}} \right\}$$

Usare le asimmetrie del LABS

 M_{ll} [GeV]

Asimmetrie $\theta \in [40, 140] \deg$ Large Angle Bhabha Scattering (LABS)

$$A_{ab} = \frac{N_a - N_b}{N_a + N_b} \qquad \{a, b\}$$

 $\{a, b\} = \{F, B\}, \{L, R\}, \{\uparrow, \downarrow\}$

La predizione teorica dipende dai C che possono essere fittati

$$A_{ab}^{\text{th}} = A_{ab}^{\text{SM}} \left\{ 1 + \frac{(\sigma_a - \sigma_b)^{(6)}}{(\sigma_a - \sigma_b)_{\text{SM}}} - \frac{(\sigma_a + \sigma_b)^{(6)}}{(\sigma_a + \sigma_b)_{\text{SM}}} \right\}$$

Non facciamo assunzioni sulla struttura di flavour

Run al picco della Z – FCC-ee

Run a 250 GeV – ILC

Incontri di Fisica delle Alte Energie 2025

Run al picco della Z – FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\rm NP}^2} \left[\frac{(\sigma_{\rm F} - \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm SM}} - \frac{(\sigma_{\rm F} + \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm SM}} \right]_{\alpha} = \frac{\Delta A_{\rm FB,\alpha}^0}{A_{\rm FB,\alpha}^0},$$

Run a 250 GeV – ILC

Incontri di Fisica delle Alte Energie 2025

Run al picco della Z – FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\rm NP}^2} \left[\frac{(\sigma_{\rm F} - \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm SM}} - \frac{(\sigma_{\rm F} + \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm SM}} \right]_{\alpha} = \frac{\Delta A_{\rm FB,\alpha}^0}{A_{\rm FB,\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

Run al picco della Z – FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\rm NP}^2} \left[\frac{(\sigma_{\rm F} - \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm SM}} - \frac{(\sigma_{\rm F} + \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm SM}} \right]_{\alpha} = \frac{\Delta A_{\rm FB,\alpha}^0}{A_{\rm FB,\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

Run al picco della Z – FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{\alpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\rm NP}^2} \left[\frac{(\sigma_{\rm F} - \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm SM}} - \frac{(\sigma_{\rm F} + \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm SM}} \right]_{\alpha} = \frac{\Delta A_{\rm FB,\alpha}^0}{A_{\rm FB,\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

Run a 250 GeV – ILC

Per fasci polarizzati: A_{LR} non è sensibile a tutti i C. Proponiamo

$$A^{-}_{\uparrow\downarrow}(P_{e^{\pm}},\cos\theta) = \frac{d\sigma(P_{e^{-}},P_{e^{-}}) - d\sigma(P_{e^{+}},-P_{e^{-}})}{d\sigma(P_{e^{+}},P_{e^{-}}) + d\sigma(P_{e^{+}},-P_{e^{-}})}$$

Asimmetria up-down per fasci polarizzati

Run al picco della Z – FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{\alpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\rm NP}^2} \left[\frac{(\sigma_{\rm F} - \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm SM}} - \frac{(\sigma_{\rm F} + \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm SM}} \right]_{\alpha} = \frac{\Delta A_{\rm FB,\alpha}^0}{A_{\rm FB,\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

Run a 250 GeV – ILC

Per fasci polarizzati: A_{LR} non è sensibile a tutti i C. Proponiamo

$$A_{\uparrow\downarrow}^{-}(P_{e^{\pm}}, \cos\theta) = \frac{d\sigma(P_{e^{-}}, P_{e^{-}}) - d\sigma(P_{e^{+}}, -P_{e^{-}})}{d\sigma(P_{e^{+}}, P_{e^{-}}) + d\sigma(P_{e^{+}}, -P_{e^{-}})}$$

Asimmetria up-down per fasci polarizzati

Incontri di Fisica delle Alte Energie 2025

Conclusioni

Sommario

- precisione richiesta
- ullet
- accoppiamenti a 4 fermioni

Le correzioni radiative sono indispensabili per raggiungere la precisione sulla Luminosità

La Nuova Fisica Leggera non impatta il SABS alla

Le **asimmetrie** possono essere usate per costringere gli

arXiv:2501.05256

Correzioni radiative a LEP

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$

calcolo di emissioni di fotoni aggiuntivi è
essenziale per una predizione fisica
1999 0.030%

 $\mathcal{O}\left(\alpha^{2}L \oplus \alpha^{3}L^{3}\right)$

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

Correzioni radiative a LEP

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

Fotoniche

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$
Il calcolo di emissioni di fotoni aggiuntivi è
essenziale per una predizione fisica

$$1999 \quad 0.030\%$$

$$\mathcal{O} \left(\alpha^2 L \oplus \alpha^3 L^2 + \alpha^3$$

Scenario LEP 18-52 mrad

Janot and Jadach Phys.Lett.B 803 (2020)

Interazioni di Contatto

"Electroweak Measurements in Electron–Positron Collisions at W-Boson-Pair Energies at LEP." Physics Reports, vol. 532, no. 4, Nov. 2013, pp. 119-244. arXiv:1302.3415

Nelle analisi di LEP le interazioni di contatto venivano parametrizzate da

Model	Λ^{ee} (TeV)	Λ_{ee}^+ (TeV)
LL^{\pm}	8.0	8.7
RR^{\pm}	7.9	8.6
$\mathrm{V}\mathrm{V}^{\pm}$	15.3	20.6
AA^{\pm}	14.0	10.1
LR^{\pm}	8.5	11.9
RL^{\pm}	8.5	11.9
$\mathrm{V0}^{\pm}$	11.2	12.4
$\mathrm{A0}^{\pm}$	11.8	17.0
$A1^{\pm}$	4.0	3.9

$$\eta_{ij}\left(\bar{e}_{i}\gamma_{\mu}e_{i}\right)\left(\bar{e}_{j}\gamma^{\mu}e_{j}\right)$$

$$\frac{g^2}{4\pi} = 1$$

$$\mathcal{M}(t)_{\gamma}^{\dagger} \mathcal{M}_{\text{LL/RR}} = -32\pi\alpha \frac{(1+\cos\theta)^2}{(1-\cos\theta)}$$
$$\mathcal{M}(t)_{\gamma}^{\dagger} \mathcal{M}_{\text{RL/LR}} = -64\pi\alpha \frac{s}{(1-\cos\theta)}$$

Incontri di Fisica delle Alte Energie 2025

SMEFT: Settore Elettrodebole

Usando lo schema $\{lpha, M_Z, G_\mu\}$ La Lagrangiana dello SMEFT nel settore EW può essere scritta come

$$\mathscr{L}_{\text{SMEFT}}^{\text{NC}} = -\sqrt{4\pi\alpha} \left(\bar{e}\gamma^{\mu}e\right)A_{\mu} + \frac{\sqrt{4\pi\alpha}}{s_{w}c_{W}} \left\{ \bar{e}_{L}\left(\hat{g}_{L}^{Z} + \frac{\Delta g_{L}^{Ze}}{\Lambda^{2}}\right)\gamma^{\mu}e_{L} + \bar{e}_{R}\left(\hat{g}_{R}^{Z} + \frac{\Delta g_{R}^{Ze}}{\Lambda^{2}}\right)\gamma^{\mu}e_{R} \right\} Z_{\mu}$$

Deviazioni dei parametri di input

I. Brivio arXiv:2012.11343

$$g = g_{\rm SM} + \Delta g$$

$$G_{\mu} = \frac{1}{\sqrt{2}v_T^2} \left(1 + \frac{1}{\sqrt{2}G_{\mu}} \left(C_{Hl}^{(3)11} + C_{Hl}^{(3)22} - C_{ll}^{1221}\right)\right)$$

$$\alpha_{\rm em} = \frac{1}{4\pi} \frac{g_W^2 g_1^2}{g_W^2 + g_1^2} (1 + \Delta \alpha_{\rm em})$$

Accoppiamenti della Z ai fermioni

Combinazioni lineari dei coefficienti di Wilson nella Base di Varsavia

$$\Delta g_L^{Z,e} = -\frac{1}{2} C_{\phi l}^{(3)} - \frac{1}{2} C_{\phi l} + f\left(-\frac{1}{2}, -1\right)$$
$$\Delta g_R^{Z,e} = -\frac{1}{2} C_{\phi e} + f(0, -1)$$

For SILH Basis arXiv:1610.07922

$$f(T^3, Q) = -Q \frac{s_w c_w}{c_w^2 - s_w^2} C_{\phi WB} + \left(\frac{1}{4}C_{ll,1221} - \frac{1}{2}C_{\phi l,11}^{(3)} - \frac{1}{2}C_{\phi l,22}^{(3)}\right) \left(T^3 + Q_{\phi l,22}^{(3)}\right)$$

Metodologia del fit

$$\Delta A_{ab} = \sqrt{\sum_{k=a,b} \left(\frac{\partial A_{ab}}{\partial N_k}\right)^2 \Delta_k^2} = 2\sqrt{\frac{N_a N_b}{(N_a + N_b)^3}}.$$

Il numero di eventi atteso è calcolato usando la luminosità di design in 6 mesi di run

Run al picco della Z – FCC-ee

 $\mathcal{L}_{\rm FCC} = 1.4 \times 10^{36} \, {\rm cm}^{-2} \, {\rm s}^{-1}$

Si ottiene un'errore sull'asimmetria nei tre punti

$\Delta A^0_{\mathrm{FB},\alpha} \lesssim 2 \times 10^{-5}$

Vengono generati dei sample Gaussiani distribuiti intorno alla predizione SM con errore statistico

$$g\left(A_{\mathrm{FB}}^{\mathrm{SM}},\Delta A_{\mathrm{FB}}^{0}
ight)_{lpha}$$

Si risolve il sistema ogni volta e si ottiene l'incertezza su C

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\rm NP}^2} \left[\frac{(\sigma_{\rm F} - \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm SM}} - \frac{(\sigma_{\rm F} + \sigma_{\rm B})_i^{(6)}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm SM}} \right]_{\alpha} = \frac{\Delta A_{\rm FB,\alpha}^0}{A_{\rm FB,\alpha}^0},$$

Run a 250 GeV – ILC

$$\mathcal{L}_{ILC} = 1.35 \times 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$$

Si considerano le predizioni in bin di $\cos \theta = 0.02$

$$\mathbf{A}_{\alpha} \equiv \left(A^{0}_{\mathrm{pol}} - A^{\mathrm{th}}_{\mathrm{pol}}(\vec{C})\right)_{\alpha}$$

La Likelihood Gaussiana è data da con W matrice delle covarianze $L(\vec{C}) = \mathcal{N} \exp\left\{-\frac{1}{2}\mathbf{A}^T(\vec{C}) W^{-1} \mathbf{A}(\vec{C})\right\}$ $\chi^2(\vec{C}) \le 1$ Gli ellissoidi si ottengono dalla regione

L'approccio è equivalente a calcolare i CL dall'inversa di

$$\chi^2(\vec{C}) = \frac{1}{\Lambda_{\rm NP}^4} \sum_{i,j} \sum_{\alpha,\beta} C_i \kappa_{i,\alpha}^{(6)} W_{\alpha\beta}^{-1} \kappa_{j,\beta}^{(6)} C_j$$