Contaminazione da Nuova Fisica in misure di luminosità di precisione a futuri acceleratori e^+e^-

Incontri di Fisica delle Alte Energie 2025 10 Aprile 2025, Cagliari

Francesco P. Ucci

in collaboration with M. Chiesa C. L. Del Pio G. Montagna O. Nicrosini F. Piccinini

Introduzione

Misure di sezioni d'urto

$$\sigma_{e^+e^-\to X}^{\exp} = \frac{1}{\epsilon} \frac{N_{e^+e^-\to X}^{\exp}}{L}$$

$$N_{e^+e^- \to X}^{\text{exp}}$$
 # eventi osservati

L Luminosità della macchina

Accettanza sperimentale

Misure di sezioni d'urto

$$\sigma_{e^+e^-\to X}^{\exp} = \frac{1}{\epsilon} \frac{N_{e^+e^-\to X}^{\exp}}{L}$$

$$N_{e^+e^- \to X}^{\text{exp}}$$

eventi osservati

L

Luminosità della macchina

 ϵ

Accettanza sperimentale

Precisione sulla sezione d'urto

Errore sperimentale

Errore statistico

Errore sulla luminosità

$$\frac{\delta \sigma_{e^+e^- \to X}^{\text{exp}}}{\sigma_{e^+e^- \to X}^{\text{exp}}}$$

$$=$$
 $\frac{\delta\epsilon}{\epsilon}$

 \oplus

$$\frac{\delta N_{e^+e^- \to X}^{\text{exp}}}{N_{e^+e^- \to X}^{\text{exp}}}$$

 \bigoplus

 $\frac{\delta L}{L}$

Deve essere **piccolo** per sfruttare la statistica

Misure di sezioni d'urto

$$\sigma_{e^+e^-\to X}^{\exp} = \frac{1}{\epsilon} \frac{N_{e^+e^-\to X}^{\exp}}{L}$$

$$N_{e^+e^- \to X}^{\mathrm{exp}}$$
 # eventi osservati

Luminosità della macchina

Accettanza sperimentale

Precisione sulla sezione d'urto

Errore sperimentale

Errore statistico

Errore sulla luminosità

Deve essere **piccolo** per sfruttare la statistica

Quantità sensibili alle Higgs/Top/EW Factories

Jadach S., Nicrosini O. et al CERN Report 96-01 Focus Topic ECF arxiv/2401.07564

91 GeV
$$\sigma_0^{\text{had}}, \Gamma_Z, N_{\nu}$$

160 GeV
$$M_W, \Gamma_W$$

240 GeV
$$\sigma(e^+e^- \to HZ)$$

$$L = \int \mathcal{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

 $L = \int \mathscr{L} \mathrm{d}t = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\mathrm{th}}} \qquad \begin{array}{l} \text{Ai collider di leptoni la luminosità} \\ \text{è misurata attraverso un} \\ \text{processo di controllo} \end{array}$

$$L = \int \mathcal{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

 $L = \int \mathscr{L} \mathrm{d}t = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\mathrm{th}}} \qquad \begin{array}{l} \text{Ai collider di leptoni la luminosità} \\ \text{è misurata attraverso un} \\ \text{processo di controllo} \end{array}$

Errore

$$L = \int \mathcal{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

 $L = \int \mathscr{L} \mathrm{d}t = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\mathrm{th}}} \qquad \begin{array}{l} \text{Ai collider di leptoni la luminosità} \\ \text{è misurata attraverso un} \\ \text{processo di controllo} \end{array}$

Errore

Richieste per il processo

Processo con poco background e misurabile ad alta precisione

$$\sigma \simeq \mathcal{O}(10^2 - 10^3 \,\mathrm{nb})$$

Sezione d'urto grande

$$\delta\sigma_0^{
m tl}$$

$$\sigma^{(n)} = \left(\frac{\alpha}{\pi}\right)^n \log^n \frac{Q^2}{m_e^2}$$

Calcolabile ad alta precisione

$$L = \int \mathcal{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

 $L = \int \mathscr{L} \mathrm{d}t = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\mathrm{th}}} \qquad \begin{array}{l} \text{Ai collider di leptoni la luminosità} \\ \text{è misurata attraverso un} \\ \text{processo di controllo} \end{array}$

A LEP I il processo utilizzato era il **Bhabha Scattering a Piccolo Angolo (SABS)**

$$e^+e^- \rightarrow e^+e^-$$

Accettanza tra 1-5 gradi

Errore

Richieste per il processo

 $\epsilon_{
m exp}$

Processo con poco background e misurabile ad alta precisione

$$\sigma \simeq \mathcal{O}(10^2 - 10^3 \,\mathrm{nb})$$

Sezione d'urto grande

$$\sigma^{(n)} = \left(\frac{\alpha}{\pi}\right)^n \log^n \frac{Q^2}{m_e^2}$$

Calcolabile ad alta precisione

$$L = \int \mathcal{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

 $L = \int \mathscr{L} \mathrm{d}t = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\mathrm{th}}} \qquad \begin{array}{l} \text{Ai collider di leptoni la luminosità} \\ \text{è misurata attraverso un} \\ \text{processo di controllo} \end{array}$

A LEP I il processo utilizzato era il **Bhabha Scattering a Piccolo Angolo (SABS)**

$$e^+e^- \rightarrow e^+e^-$$

Accettanza tra 1-5 gradi

Errore Richieste per il processo LEP I **OPAL Collaboration** arXiv: hep-ex/9910066 δL $< 10^{-3}$ $\delta\epsilon_{\mathrm{exp}}$ Processo con poco $\simeq 3.4 \times 10^{-4}$ background e misurabile ad alta precisione $\epsilon_{ m exp}$ \oplus δN_0 $\sigma \simeq \mathcal{O}(10^2 - 10^3 \,\mathrm{nb})$ $\simeq 3 \times 10^{-4}$ Sezione d'urto grande

Calcolabile ad alta precisione

Phys.Lett.B 803 (2020)

$$L = \int \mathcal{L} dt = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\text{th}}}$$

 $L = \int \mathscr{L} \mathrm{d}t = \frac{1}{\epsilon} \frac{N_0}{\sigma_0^{\mathrm{th}}} \qquad \begin{array}{l} \text{Ai collider di leptoni la luminosità} \\ \text{è misurata attraverso un} \\ \text{processo di controllo} \end{array}$

A LEP I il processo utilizzato era il **Bhabha Scattering a Piccolo Angolo (SABS)**

$$e^+e^- \rightarrow e^+e^-$$

Accettanza tra 1-5 gradi

Errore	Richieste per il processo	LEP I	FCC/CEPC
$\int \delta L$		OPAL Collaboration arXiv: hep-ex/9910066	
$\frac{\delta L}{L}$		$< 10^{-3}$	$< 10^{-4}$
$\left[rac{\delta\epsilon_{ m exp}}{-} ight]$	Processo con poco background e misurabile	$\simeq 3.4 \times 10^{-4}$	$\simeq 10^{-4}$
$\epsilon_{ m exp}$	ad alta precisione		
\oplus			
$\frac{\delta N_0}{}$	$\sigma \simeq \mathcal{O}(10^2 - 10^3 \mathrm{nb})$	$\simeq 3 \times 10^{-4}$	$< 10^{-6}$
N_0	Sezione d'urto grande		
\oplus			
$\delta\sigma_0^{ ext{th}}$	$\sigma^{(n)} = \left(\frac{\alpha}{\pi}\right)^n \log^n \frac{Q^2}{m_e^2}$	$\simeq 3.7 \times 10^{-4}$	$< 10^{-4}$

Phys.Lett.B 803 (2020)

Calcolabile ad alta precisione

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv. Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

3

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

2018

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

Scenario FCC-ee

64-86 mrad

S. Jadach et al. Physics Letters B 790 (2019) 314–321

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv. Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

Scenario FCC-ee

64-86 mrad

S. Jadach et al. Physics Letters B 790 (2019) 314–321

2018

Previsto

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv. Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

Scenario FCC-ee

64-86 mrad

S. Jadach et al. Physics Letters B 790 (2019) 314-321

 $\frac{\delta_{VP}\sigma}{\simeq} \simeq 2.4 \times 10^{-4}$

Janot, P. Direct measurement of $\alpha QED(m^2z)$ at the FCC-ee. J. High Energ. Phys. 2016, 53 (2016)

2018

Previsto

Algoritmi di risommazione degli ordini superiori in QED sono necessari

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di Nuova Fisica?

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di Nuova Fisica?

Modello Standard

$$\frac{\delta \sigma_{\rm SM}}{\sigma_0} \bigg|_{\rm th}^{\rm FCC} \le 10^{-4}$$

La precisione richiesta dai **futuri acceleratori** si raggiunge nel MS con le correzioni radiative

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di Nuova Fisica?

Modello Standard

La precisione richiesta dai **futuri acceleratori** si raggiunge nel MS con le correzioni radiative

La luminosità, calcolata con il Bhabha a piccolo angolo, può ricevere contributi di **Nuova Fisica?**

Modello Standard

$$\frac{\delta \sigma_{\rm SM}}{\sigma_0} \bigg|_{\rm th}^{\rm FCC} \le 10^{-4}$$

La precisione richiesta dai **futuri acceleratori** si raggiunge nel MS con le correzioni radiative

Nuova Fisica

$$\frac{\delta\sigma_{\rm NP}}{\sigma_0} \simeq ?$$

La **Nuova Fisica** può interferire con il MS. A che livello di precisione?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

1. La scala di energia della NF è **sotto** or **sopra** la scala elettrodebole?

4. Quantificare la deviazione della predizione del SABS dal MS

Implementazione in BabaYaga@NLO

Nuova Fisica Leggera

 $\Lambda_{
m NP} \ll \Lambda_{
m EW}$

Se la NF è leggera dobbiamo specificare spin e interazione

Nuova Fisica Leggera

Se la NF è leggera dobbiamo specificare spin e interazione

(Pseudo)scalare

$$\mathcal{L}_{\text{ALPs}}^{a} = \frac{1}{4} g_{a\gamma\gamma} (F_{\mu\nu} \tilde{F}^{\mu\nu}) a + g_{aee} (\bar{e} i\gamma_5 e) a$$

BaBar Phys. Rev. Lett. 119, 131804 (2017)

$$g_{a\gamma\gamma} \simeq 2 \times 10^{-4} \,\mathrm{GeV^{-1}}$$

$$(g_{aee}, m_a) \simeq (3 \times 10^{-3}, 1 \text{ GeV})$$

Highly suppressed,
$$\sigma(e^+e^-\to e^+e^-a)\sim sg_{a\gamma\gamma}^2$$

Nuova Fisica Leggera

Se la NF è leggera dobbiamo specificare spin e interazione

(Pseudo)scalare

$$\mathcal{L}_{\text{ALPs}}^{a} = \frac{1}{4} g_{a\gamma\gamma} (F_{\mu\nu} \tilde{F}^{\mu\nu}) a + g_{aee} (\bar{e} i\gamma_5 e) a$$

BaBar Phys. Rev. Lett. 119, 131804 (2017)

$$g_{a\gamma\gamma} \simeq 2 \times 10^{-4} \,\mathrm{GeV^{-1}}$$

Highly suppressed, $\sigma(e^+e^-\to e^+e^-a)\sim sg_{a\gamma\gamma}^2$

NA64 arXiv:2102.01885

$$(g_{aee}, m_a) \simeq (3 \times 10^{-3}, 1 \text{ GeV})$$

Vector + Axial Vector

$$\mathcal{L}_{\text{Axions}}^{a} = g_{V}'(\bar{e}\,\gamma^{\mu}\,e)\,V_{\mu} + g_{A}'\bar{e}\,(\gamma^{\mu}\gamma_{5})\,e\,V_{\mu}$$

NA64 arXiv:2102.01885

$$(g'_V, M_V) \simeq (3 \times 10^{-4}, 1 \text{ GeV})$$

Il contributo da NF leggera è **trascurabile**

Il modo più completo di considerare effetti di NP pesante è la Teoria Effettiva del Modello Standard (SMEFT)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} \hat{O}_{i}^{(6)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

$$\hat{O}_i^{(6)}$$
 Operatori con gli stessi campi e simmetrie del MS

Il modo più completo di considerare effetti di NP pesante è la Teoria Effettiva del Modello Standard (SMEFT)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} \hat{O}_{i}^{(6)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

Operatori con gli stessi campi e simmetrie del MS

Deviazioni dei parametri di input e degli accoppiamenti

I. Brivio arXiv:2012.11343

$$g = g_{\rm SM} + \Delta g$$

$$\Delta \alpha_{\rm em} = 0$$

$$\Delta g_{L,R}^{Ze} \neq 0$$

Il modo più completo di considerare effetti di NP pesante è la Teoria Effettiva del Modello Standard (SMEFT)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} \hat{O}_{i}^{(6)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

$$\hat{O}_i^{(6)}$$
 Operatori con gli stessi campi e simmetrie del MS

Deviazioni dei parametri di input e degli accoppiamenti

I. Brivio arXiv:2012.11343

$$g = g_{\rm SM} + \Delta g$$

$$\Delta g_{L,R}^{Ze} \neq 0$$

Nuovi vertici di interazione

Operatori a 4 fermioni assenti nel MS Analogo alla *Teoria di Fermi*

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

 $\sigma_i^{(6)}$ È l'interferenza tra SM e SMEFT

8

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

 $\sigma_i^{(6)}$ È l'interferenza tra SM e SMEFT

Ipotesi di Lavoro

$$\sigma^{\gamma} + \sigma^{Z} + \sigma^{\gamma Z}$$

$$\mathcal{O}(\Lambda_{\mathrm{NP}}^{-2})$$

$$\left(\mathscr{M}_{\mathrm{SM}}^{\dagger}\mathscr{M}^{(6)}\right)_{\mathrm{LO}}$$

$$\sigma^{\gamma} + \sigma^{Z} + \sigma^{\gamma Z} \qquad \text{SM completo}$$

$$\mathcal{O}(\Lambda_{\text{NP}}^{-2}) \qquad \text{Dimensione 6}$$

$$\left(\mathcal{M}_{\text{SM}}^{\dagger} \mathcal{M}^{(6)}\right)_{\text{LO}} \qquad \text{Approssimazione LO}$$

$$\mathcal{O}\left(\frac{\alpha}{\pi} \ln \frac{\Lambda_{\text{NP}}^{2}}{|t|}\right) \sim 10 \,\% \qquad \text{Le correzioni NLO si comportano come la QED}$$

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

È l'interferenza tra SM e SMEFT

Ipotesi di Lavoro

$$\sigma^{\gamma} + \sigma^{Z} + \sigma^{\gamma Z}$$
 SM completo
$$\mathcal{O}(\Lambda_{\mathrm{NP}}^{-2})$$
 Dimensione 6

$$\mathcal{O}(\Lambda_{NP}^{-2})$$

$$\left(\mathscr{M}_{\mathrm{SM}}^{\dagger}\mathscr{M}^{(6)}\right)_{\mathrm{LC}}$$

$$\left(\mathcal{M}_{\mathrm{SM}}^{\dagger} \mathcal{M}^{(6)} \right)_{\mathrm{LO}} \qquad \text{Approssimazione LO}$$

$$\mathcal{O} \left(\frac{\alpha}{\pi} \ln \frac{\Lambda_{\mathrm{NP}}^2}{|t|} \right) \sim 10 \, \% \qquad \text{Le correzioni NLO si comportano come la QED}$$

Fit Globale dei dati di LEP + Flavour

$$\Lambda_{\rm NP} = 1 \, {\rm TeV}$$

C_i	$C_i \pm \Delta(C_i)$
Δg_L^{Ze}	-0.0038 ± 0.0046
Δg_R^{Ze}	-0.0054 ± 0.0045
C_{ll}	0.17 ± 0.06
C_{le}	-0.037 ± 0.036
C_{ee}	0.034 ± 0.062

A. Falkowski et al. arXiv:1706.03783

8

Contributo SMEFT alla sezione d'urto

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma^{(6)} = \sigma_{\text{SM}} + \sum_{i=1}^{n} \frac{C_i}{\Lambda_{\text{NP}}^2} \sigma_i^{(6)}$$

È l'interferenza tra SM e SMEFT

Ipotesi di Lavoro

$$\sigma^{\gamma} + \sigma^{Z} + \sigma^{\gamma Z}$$
 SM completo

$$\mathcal{O}(\Lambda_{\mathrm{NP}}^{-2})$$

Dimensione 6

$$\left(\mathscr{M}_{\mathrm{SM}}^{\dagger}\mathscr{M}^{(6)}\right)_{\mathrm{LC}}$$

$$_{\rm LO} \mid A_{\rm p}$$

$$\left(\mathcal{M}_{\text{SM}}^{\dagger} \mathcal{M}^{(6)} \right)_{\text{LO}}$$
 Approssimazione LO
$$\mathcal{O} \left(\frac{\alpha}{\pi} \ln \frac{\Lambda_{\text{NP}}^2}{|t|} \right) \sim 10 \, \%$$
 Le correzioni NLO si comportano come la QED

Fit Globale dei dati di LEP + Flavour

$$\Lambda_{\rm NP} = 1 \, {\rm TeV}$$

C_i	$C_i \pm \Delta(C_i)$
Δg_L^{Ze}	-0.0038 ± 0.0046
Δg_R^{Ze}	-0.0054 ± 0.0045
C_{ll}	0.17 ± 0.06
C_{le}	-0.037 ± 0.036
C_{ee}	0.034 ± 0.062

A. Falkowski et al. arXiv:1706.03783

Il contributo cresce con angolo e energie

Contributo trascurabile, shift ben costretti

8

Nuova Fisica Pesante: Risultati

$$(\delta \pm \Delta \delta)_{\text{SMEFT}} = \frac{1}{\sigma_{\text{SM}}} \left(\sigma^{(6)} \pm \sqrt{\sum_{ij} \sigma_i^{(6)} V_{ij} \sigma_j^{(6)}} \right)$$

Nuova Fisica Pesante: Risultati

Sezione d'urto totale

Exp.	$[heta_{\min}, heta_{\max}]$	$\sqrt{s} \; [\mathrm{GeV}]$	$(\delta \pm \Delta \delta)_{ ext{SMEFT}}$	$\Delta L/L$
FCC	$[3.7^\circ, 4.9^\circ]$	91 160 240 365	$(-4.2 \pm 1.7) \times 10^{-5}$ $(-1.3 \pm 0.5) \times 10^{-4}$ $(-2.9 \pm 1.2) \times 10^{-4}$ $(-6.7 \pm 2.7) \times 10^{-4}$	$< 10^{-4}$ 10^{-4}
ILC	$[1.7^\circ, 4.4^\circ]$	250 500	$(-2.5 \pm 0.9) \times 10^{-4}$ $(-4.9 \pm 1.9) \times 10^{-4}$	$< 10^{-3}$
CLIC	$[2.2^\circ, 7.7^\circ]$	1500 3000	$(-9.7 \pm 3.9) \times 10^{-3}$ $(-4.2 \pm 1.7) \times 10^{-2}$	$< 10^{-2}$

Sezione d'urto differenziale

$$(\delta \pm \Delta \delta)_{\text{SMEFT}} = \frac{1}{\sigma_{\text{SM}}} \left(\sigma^{(6)} \pm \sqrt{\sum_{ij} \sigma_i^{(6)} V_{ij} \sigma_j^{(6)}} \right)$$

9

Nuova Fisica Pesante: Risultati

Sezione d'urto totale

Exp.	$[heta_{\min}, heta_{\max}]$	$\sqrt{s} \; [\mathrm{GeV}]$	$(\delta \pm \Delta \delta)_{ ext{SMEFT}}$	$\overline{\Delta L/L}$
FCC	$[3.7^\circ, 4.9^\circ]$	91	$(-4.2 \pm 1.7) \times 10^{-5}$	$< 10^{-4}$
		160	$(-1.3 \pm 0.5) \times 10^{-4}$	
		240	$(-2.9 \pm 1.2) \times 10^{-4}$	10^{-4}
		365	$(-6.7 \pm 2.7) \times 10^{-4}$	
ILC	$[1.7^\circ, 4.4^\circ]$	250	$(-2.5 \pm 0.9) \times 10^{-4}$. 10-3
		500	$(-2.5 \pm 0.9) \times 10^{-4}$ $(-4.9 \pm 1.9) \times 10^{-4}$	< 10
CLIC	$[2.2^\circ, 7.7^\circ]$	1500	$(-9.7 \pm 3.9) \times 10^{-3}$	< 10-2
		3000	$(-9.7 \pm 3.9) \times 10^{-3}$ $(-4.2 \pm 1.7) \times 10^{-2}$	< 10

$(\delta \pm \Delta \delta)_{\text{SMEFT}} = \frac{1}{\sigma_{\text{SM}}} \left(\sigma^{(6)} \pm \sqrt{\sum_{ij} \sigma_i^{(6)} V_{ij} \sigma_j^{(6)}} \right)$

I risultati mostrano che il contributo **non è trascurabile**

$$\delta_{\mathrm{SMEFT}} \simeq \delta L$$

9

Sezione d'urto differenziale

Sommario

$$\overrightarrow{C}_{4f} = \{C_{ll}, C_{le}, C_{ee}\}$$

I coefficienti a 4 fermioni **impattano** sulla luminosità

Costringere le interazioni di contatto usando il LABS

Usare le asimmetrie del LABS

HL-LHC non migliorerà i bound in modo significativo

$$C = 0$$

Ipotesi di nessuna scoperta di NP

Usare le asimmetrie del LABS

 $\Delta C_{
m HLLHC}$

HL-LHC non migliorerà i bound in modo significativo

$$C = 0$$

Ipotesi di nessuna scoperta di NP

Asimmetrie $\theta \in [40,140] \deg$ Large Angle Bhabha Scattering (LABS)

$$A_{ab} = \frac{N_a - N_b}{N_a + N_b}$$
 {a,b} = {F,B}, {L,R}, { \ \tau, \ \ \}

La predizione teorica dipende dai C che possono essere fittati

$$A_{ab}^{\text{th}} = A_{ab}^{\text{SM}} \left\{ 1 + \frac{(\sigma_a - \sigma_b)^{(6)}}{(\sigma_a - \sigma_b)_{\text{SM}}} - \frac{(\sigma_a + \sigma_b)^{(6)}}{(\sigma_a + \sigma_b)_{\text{SM}}} \right\}$$

Usare le asimmetrie del LABS

 $\Delta C_{
m HLLHC}$

HL-LHC non migliorerà i bound in modo significativo

$$C = 0$$

Ipotesi di nessuna scoperta di NP

Asimmetrie $\theta \in [40,140] \deg$ Large Angle Bhabha Scattering (LABS)

$$A_{ab} = \frac{N_a - N_b}{N_a + N_b}$$
 {a,b} = {F,B}, {L,R}, { \ \tau, \ \ \}

La predizione teorica dipende dai C che possono essere fittati

$$A_{ab}^{\text{th}} = A_{ab}^{\text{SM}} \left\{ 1 + \frac{(\sigma_a - \sigma_b)^{(6)}}{(\sigma_a - \sigma_b)_{\text{SM}}} - \frac{(\sigma_a + \sigma_b)^{(6)}}{(\sigma_a + \sigma_b)_{\text{SM}}} \right\}$$

Non facciamo assunzioni sulla struttura di flavour

Run al picco della Z — FCC-ee

Run a 250 GeV — ILC

Run al picco della Z — FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\text{NP}}^2} \left[\frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{SM}}} - \frac{(\sigma_{\text{F}} + \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{SM}}} \right]_{\alpha} = \frac{\Delta A_{\text{FB},\alpha}^0}{A_{\text{FB},\alpha}^0},$$

Run a 250 GeV — ILC

Run al picco della Z — FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\text{NP}}^2} \left[\frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{SM}}} - \frac{(\sigma_{\text{F}} + \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{SM}}} \right]_{\alpha} = \frac{\Delta A_{\text{FB},\alpha}^0}{A_{\text{FB},\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

$$\sqrt{s_1} = 89 \,\text{GeV}$$

$$\sqrt{s_2} = 93 \,\text{GeV}$$

$$\sqrt{s_3} = 98 \,\text{GeV}$$

Run a 250 GeV — ILC

Run al picco della Z — FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\text{NP}}^2} \left[\frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{SM}}} - \frac{(\sigma_{\text{F}} + \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{SM}}} \right]_{\alpha} = \frac{\Delta A_{\text{FB},\alpha}^0}{A_{\text{FB},\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

$$\sqrt{s_1} = 89 \,\text{GeV}$$

$$\sqrt{s_2} = 93 \,\text{GeV}$$

$$\sqrt{s_3} = 98 \,\text{GeV}$$

In 6 mesi di run operativo su ogni punto

$$\Delta C_{4f} < 10^{-2}$$
 $\delta_{\text{SMEFT}} < 10^{-5}$

Run a 250 GeV — ILC

11

Run al picco della Z — FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\text{NP}}^2} \left[\frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{SM}}} - \frac{(\sigma_{\text{F}} + \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{SM}}} \right]_{\alpha} = \frac{\Delta A_{\text{FB},\alpha}^0}{A_{\text{FB},\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

$$\sqrt{s_1} = 89 \,\text{GeV}$$

$$\sqrt{s_2} = 93 \,\text{GeV}$$

$$\sqrt{s_3} = 98 \,\text{GeV}$$

In 6 mesi di run operativo su ogni punto

$$\Delta C_{4f} < 10^{-2}$$
 $\delta_{\text{SMEFT}} < 10^{-5}$

Run a 250 GeV — ILC

Per fasci polarizzati: A_{LR} non è sensibile a tutti i C. Proponiamo

$$A_{\uparrow\downarrow}^{-}(P_{e^{\pm}},\cos\theta) = \frac{d\sigma(P_{e^{-}},P_{e^{-}}) - d\sigma(P_{e^{+}},-P_{e^{-}})}{d\sigma(P_{e^{+}},P_{e^{-}}) + d\sigma(P_{e^{+}},-P_{e^{-}})}$$

Asimmetria up-down per fasci polarizzati

11

Run al picco della Z — FCC-ee

Utilizziamo l'asimmetria forward-backward per $\sqrt{s_{lpha}}$

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\text{NP}}^2} \left[\frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{SM}}} - \frac{(\sigma_{\text{F}} + \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{SM}}} \right]_{\alpha} = \frac{\Delta A_{\text{FB},\alpha}^0}{A_{\text{FB},\alpha}^0},$$

Per fittare 3 coefficienti possiamo usare l'asimmetria in 3 punti in energia

$$\sqrt{s_1} = 89 \,\text{GeV}$$

$$\sqrt{s_2} = 93 \,\text{GeV}$$

$$\sqrt{s_3} = 98 \,\text{GeV}$$

In 6 mesi di run operativo su ogni punto

$$\Delta C_{4f} < 10^{-2}$$
 $\delta_{\text{SMEFT}} < 10^{-5}$

Run a 250 GeV — ILC

Per fasci polarizzati: A_{LR} non è sensibile a tutti i C. Proponiamo

$$A_{\uparrow\downarrow}^{-}(P_{e^{\pm}},\cos\theta) = \frac{d\sigma(P_{e^{-}},P_{e^{-}}) - d\sigma(P_{e^{+}},-P_{e^{-}})}{d\sigma(P_{e^{+}},P_{e^{-}}) + d\sigma(P_{e^{+}},-P_{e^{-}})}$$

Asimmetria up-down per fasci polarizzati

Calcoliamo i CL con la likelihood

$$\chi^{2} = \sum_{\alpha=1}^{n} \frac{\left(A_{\text{pol}}^{0} - A_{\text{pol}}^{\text{th}}(\overrightarrow{C}_{4f})\right)_{\alpha}^{2}}{(\Delta A_{\text{pol}}^{0})_{\alpha}^{2}} \qquad \longrightarrow \qquad \delta_{\text{SMEFT}} < 10^{-7}$$

Sommario

- Le correzioni radiative sono indispensabili per raggiungere la precisione sulla Luminosità
- La Nuova Fisica Leggera non impatta il SABS alla precisione richiesta

La luminosità dei futuri collider può ricevere contributi non trascurabili dalle interazioni d contatto

Le **asimmetrie** possono essere usate per costringere gli accoppiamenti a 4 fermioni

arXiv:2501.05256

Backup

Correzioni radiative a LEP

Scenario LEP

18-52 mrad

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv.Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

$$\sigma_{SABS} = \sigma_{LO} + c_1 \frac{\alpha}{\pi} L + c_2 \frac{\alpha^2}{\pi^2} L^2 + \dots$$

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

La sezione d'urto riceve contributi logaritmici

1999

0.030%

 $\mathcal{O}\left(\alpha^2L\oplus\alpha^3L^3\right)$

0.030%

Totale

0.061%

Correzioni radiative a LEP

Scenario LEP

18-52 mrad

A. Arbuzov et al. *Phys.Lett.B* 383 (1996) 238-242

G Montagna et al. Riv. Nuovo Cim. 21N9 (1998)

S. Jadach et al. Physics Letters B 790 (2019) 314-321

Il calcolo di emissioni di fotoni aggiuntivi è essenziale per una predizione fisica

$$L = \ln \frac{Q^2}{m_e^2} - 1 \simeq \mathcal{O}(10)$$

La sezione d'urto riceve contributi logaritmici

1999

0.030%

 $\mathcal{O}\left(\alpha^2L\oplus\alpha^3L^3\right)$

2018

2020

0.030%

0.010%

G. Montagna et al. Nucl. Phys. B 547 (1999) Phys. Lett. B 459 (1999)

0.040%

0.013%

F. Jegerlehner, indico.cern.ch/event/ 469561

0.061%

Totale

0.038%

0.037%

Janot and Jadach Phys.Lett.B 803 (2020)

Interazioni di Contatto

"Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP." Physics Reports, vol. 532, no. 4, Nov. 2013, pp. 119–244. arXiv:1302.3415

Nelle analisi di LEP le interazioni di contatto venivano parametrizzate da

$$\mathcal{L}_{\text{eff}} = \frac{g^2}{2\Lambda^2} \sum_{i,j=L,R} \eta_{ij} \left(\bar{e}_i \gamma_{\mu} e_i \right) \left(\bar{e}_j \gamma^{\mu} e_j \right)$$

$$\frac{g^2}{4\pi} = 1$$

Model	Λ_{ee}^- (TeV)	Λ_{ee}^+ (TeV)
LL^{\pm}	8.0	8.7
RR^\pm	7.9	8.6
$ m VV^{\pm}$	15.3	20.6
AA^\pm	14.0	10.1
LR^{\pm}	8.5	11.9
RL^\pm	8.5	11.9
$ m V0^{\pm}$	11.2	12.4
$ m A0^{\pm}$	11.8	17.0
$\mathrm{A1}^{\pm}$	4.0	3.9

Bound per la scala NP

Λ₊
Interferenza
Positiva

Λ_InterferenzaNegative

$$\mathcal{M}(t)_{\gamma}^{\dagger} \mathcal{M}_{LL/RR} = -32\pi\alpha \frac{(1+\cos\theta)^2}{(1-\cos\theta)} s$$

$$\mathcal{M}(t)_{\gamma}^{\dagger} \mathcal{M}_{\text{RL/LR}} = -64\pi\alpha \frac{s}{(1 - \cos\theta)}$$

SMEFT: Settore Elettrodebole

Usando lo schema $\{\alpha, M_Z, G_\mu\}$ La Lagrangiana dello SMEFT nel settore EW può essere scritta come

$$\mathcal{L}_{\mathrm{SMEFT}}^{\mathrm{NC}} = -\sqrt{4\pi\alpha}\,(\bar{e}\gamma^{\mu}e)A_{\mu} + \frac{\sqrt{4\pi\alpha}}{s_{w}c_{W}} \left\{ \bar{e}_{L} \left(\hat{g}_{L}^{Z} + \frac{\Delta g_{L}^{Ze}}{\Lambda^{2}} \right) \gamma^{\mu}e_{L} + \bar{e}_{R} \left(\hat{g}_{R}^{Z} + \frac{\Delta g_{R}^{Ze}}{\Lambda^{2}} \right) \gamma^{\mu}e_{R} \right\} Z_{\mu}$$

Deviazioni dei parametri di input

I. Brivio arXiv:2012.11343

$$g = g_{\rm SM} + \Delta g$$

$$G_{\mu} = \frac{1}{\sqrt{2}v_T^2} \left(1 + \frac{1}{\sqrt{2}G_{\mu}} \left(C_{Hl}^{(3)11} + C_{Hl}^{(3)22} - C_{ll}^{1221}\right)\right)$$

$$\alpha_{\rm em} = \frac{1}{4\pi} \frac{g_W^2 g_1^2}{g_W^2 + g_1^2} (1 + \Delta \alpha_{\rm em})$$

Accoppiamenti della Z ai fermioni

Combinazioni lineari dei coefficienti di Wilson nella Base di Varsavia

$$\Delta g_L^{Z,e} = -\frac{1}{2} C_{\phi l}^{(3)} - \frac{1}{2} C_{\phi l} + f\left(-\frac{1}{2}, -1\right)$$

$$\Delta g_R^{Z,e} = -\frac{1}{2} C_{\phi e} + f(0, -1)$$

For SILH Basis arXiv:1610.07922

$$f(T^{3},Q) = -Q \frac{s_{w}c_{w}}{c_{w}^{2} - s_{w}^{2}} C_{\phi WB} + \left(\frac{1}{4}C_{ll,1221} - \frac{1}{2}C_{\phi l,11}^{(3)} - \frac{1}{2}C_{\phi l,22}^{(3)}\right) \left(T^{3} + Q \frac{s_{w}^{2}}{c_{w}^{2} - s_{w}^{2}}\right)$$

Metodologia del fit

$$\Delta A_{ab} = \sqrt{\sum_{k=a,b} \left(\frac{\partial A_{ab}}{\partial N_k}\right)^2 \Delta_k^2} = 2\sqrt{\frac{N_a N_b}{(N_a + N_b)^3}}.$$

Il numero di eventi atteso è calcolato usando la luminosità di design in 6 mesi di run

Run al picco della Z — FCC-ee

$$\mathcal{L}_{FCC} = 1.4 \times 10^{36} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$$

Si ottiene un'errore sull'asimmetria nei tre punti

$$\Delta A_{\mathrm{FB},\alpha}^0 \lesssim 2 \times 10^{-5}$$

Vengono generati dei sample Gaussiani distribuiti intorno alla predizione SM con errore statistico

$$g(A_{\mathrm{FB}}^{\mathrm{SM}}, \Delta A_{\mathrm{FB}}^{0})_{\alpha}$$

Si risolve il sistema ogni volta e si ottiene l'incertezza su C

$$\sum_{i \in 4f} \frac{C_i}{\Lambda_{\text{NP}}^2} \left[\frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{SM}}} - \frac{(\sigma_{\text{F}} + \sigma_{\text{B}})_i^{(6)}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{SM}}} \right]_{\alpha} = \frac{\Delta A_{\text{FB},\alpha}^0}{A_{\text{FB},\alpha}^0},$$

Run a 250 GeV — ILC

$$\mathcal{L}_{\rm ILC} = 1.35 \times 10^{34} \, \rm cm^{-2} \, s^{-1}$$

Si considerano le predizioni in bin di $\cos \theta = 0.02$

$$\mathbf{A}_{\alpha} \equiv \left(A_{\mathrm{pol}}^{0} - A_{\mathrm{pol}}^{\mathrm{th}}(\vec{C}) \right)_{\alpha}$$

La Likelihood Gaussiana è data da con W matrice delle covarianze

$$L(\vec{C}) = \mathcal{N} \exp \left\{ -\frac{1}{2} \mathbf{A}^T(\vec{C}) W^{-1} \mathbf{A}(\vec{C}) \right\}$$

Gli ellissoidi si ottengono dalla regione $\chi^2(\vec{C}) \leq 1$

L'approccio è equivalente a calcolare i CL dall'inversa di

$$\chi^{2}(\vec{C}) = \frac{1}{\Lambda_{\text{NP}}^{4}} \sum_{i,j} \sum_{\alpha,\beta} C_{i} \kappa_{i,\alpha}^{(6)} W_{\alpha\beta}^{-1} \kappa_{j,\beta}^{(6)} C_{j}$$