

APPROCCIO DI ANOMALY DETECTION PER LA RICERCA DI RISONANZE DIBOSONICHE AD ALTA MASSA IN STATI FINALI COMPLETAMENTE ADRONICI UTILIZZANDO COLLISIONI PP A $\sqrt{S} = 13$ TEV CON IL RIVELATORE ATLAS

FABRIZIO NORCIA, IFAE 2025, 09/04/2025

INTRODUZIONE

- Attualmente ad LHC non sono stati osservati eventi di Fisica oltre il Modello Standard (BSM)
- La maggior parte delle ricerche utilizza un approccio **model-dependent**
 - E se ci fosse un segnale diverso dai modelli scelti?
- Negli approcci **model-independent** ci sono minime assunzioni sulle proprietà del segnale
 - Non ottimale come il model-dependent, ma garantisce una ricerca a più ampio spettro.
 - Utilizzo di Machine Learning non supervisionato!

- Nell'Anomaly Detection (AD) si usano architetture Machine Learning per identificare valori anomali in un insieme di oggetti standard
 - Nella Fisica delle Alte Energie quest'applicazione consiste nell'identificazione di caratteristiche negli eventi ricostruiti non consistenti con il fondo atteso.

AD IN STATI FINALI COMPLETAMENTE ADRONICI

Molti processi di fisica BSM coinvolgono particelle massive le quali decadono in stati finali adronici, quindi jets.

Se $m_{Z'} \gg m_X \wedge m_Y$ Allora X e Y si trovano in un regime di alto impulso trasverso

È vantaggioso ricostruire questo tipo di eventi come un unico jet

I costituenti sono I rilasci energetici dello sciame adronico generato da quark nel rivelatore, usati per la ricostruzione dei jet tramite algoritmo Anti-kT

Ogni evento della nostra analisi deve contenere due large R-jets nello stato finale. (Anti-kT con R=1)

ANOMALY DETECTION IN ATLAS

Phys.Rev.D 108 (2023) 052009

Prima analisi Anomaly Detection in ATLAS

Ricerca di una nuova risonanza $Y \rightarrow XH \rightarrow q\bar{q}b\bar{b}$ con il dataset del Run 2:

- Modello Heavy Vector Triplet:
 - Range di massa: $m_Y = 1 \div 6 TeV$, $m_X = 65 \div 3000 GeV$;
- Identificazione dei candidati H e X:

 H^0 identificato con una DNN supervisionata allenata per ricercare risonanze in $b\overline{b}$.

X identificato applicando diverse strategie di selezione:

Model-independent: Score AD, in particolare una VRNN, che prende in input i primi 20 costituenti di ogni large-R jet con $p_T > 1.2 TeV$.

Model-dependent:

Resolved
$$\frac{m_X}{m_Y} > 0.3 \implies 2 \text{ small-R jets};$$
Merged $\frac{m_X}{m_Y} < 0.3 \implies 1 \text{ large-R jet};$

ANOMALY DETECTION IN ATLAS

Regione Anomaly detection:

Calcolo p-valori in ipotesi di solo fondo con BumpHunter.

Two-Prong (Merged) SR Two-Prong (Resolved) SR L' THIMM "STEL MA " ISOO Gey Deitt Jeis (mt. 1. + + + + (m 1. 2. 3. to the lime way to 4 Injected Signal -V. M+ \$ 800 Gey

risultati finali mostrano che la AD è competitiva rispetto alla controparte model-dependent. Nel caso di Dark Jets si ottengono addirittura risultati migliori.

GRAFI E JET

- I grafi sono un insieme di elementi detti nodi che possono essere collegati fra loro da linee chiamate archi (edges)
- A partire dai grafi è possibile definire grandezze come:
 - **Coefficiente di clustering →** misura della tendenza dei nodi a raggrupparsi insieme;
 - Mean degree e diametro del grafo
 - Il numero dei nodi e delle componenti connesse

I jet hanno una struttura interna sparsa!

I costituenti calorimetrici possono essere utilizzati per creare un oggetto di tipo grafo.

- I grafi costruiti per la ricerca sono pesati e hanno il self-loop:
 - I nodi sono i costituenti con features: [frazione di p_T , η , ϕ]
 - Gli edges rappresentano la relazione tra i nodi: $1/\Delta R$, presente se $\Delta R < 0.2$, con $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

JET-GRAPHS

- Costruiamo per ogni jet un grafo a partire da <u>tutti</u> i suoi costituenti. La rete di grafi (GNN) ci restituirà un Anomaly Score (AS) per ogni jet.
- L'allenamento con validazione della GNN viene svolto sul fondo e poi testato su un dataset fondo + segnale. Ci aspettiamo di ottenere AS maggiori per i jet del segnale.
- È possibile definire un AS per l'evento combinando gli AS dei singoli jet.

MECCANISMO DI FUNZIONAMENTO GNN

Le rappresentazioni di ogni nodo ad ogni layer sono aggiornate aggregando l'informazione passata tra il nodo in questione e tutti i nodi a lui più vicini ↔ «Message Passing»

Al passare di ogni layer la rappresentazione del nodo sarà arricchita da informazioni provenienti da nodi sempre più distanti nel grafo!

input space

χ

• = background

 $\diamond = signal$

Due architetture provate:

- <u>EGAT</u>, Edge Graph Attention Network: meccanismo di attenzione + aggiornamento edges
- 2. <u>GIN</u>, Graph Isomorphism Network: Multi Layer Perceptron Networks sulle rappresentazioni. Sono le GNN più espressive per questo motivo.

 $\mathsf{AS} = \|\phi(G_i; W^*) - c\|^2$

RISULTATI LHC OLYMPICS

R&D sul LHC Olympics dataset: <u>LHCOlympics 2020</u> è un dataset pubblico contenente simulazioni fondo + segnale utilizzato per studi di ML

- Eventi QCD dijet di fondo; -
- $Z' \rightarrow XY \rightarrow q\bar{q}q\bar{q}$ segnale, con $m_{Z'} = 3.5 TeV$, $m_X = 500 GeV \in m_Y = 100 GeV$;
- Preselezione a $p_T > 1.2 TeV \in |\eta| < 2.5$.

a

RISULTATI LHC OLYMPICS

Usiamo l'AUC come metrica per valutare la capacità della rete di separare il segnale dal fondo.

10

Model	GIN supervised	EGAT supervised	GIN unsupervised	EGAT unsupervised
loss	CrossEntropy	CrossEntropy	DeepSVDD	DeepSVDD
AUC jet-level 2-prong	90.2%	89.9%	73.7%	75.5%
AUC event-level 2-prong	96.5%	96.5%	79.6%	81.8%

ANOMALY DETECTION IN STATI FINALI COMPLETAMENTE ADRONICI IN ATLAS

- Ricerca di nuove risonanze in stati finali completamente adronici in ATLAS con tecniche AD
- Tipo di analisi: completamente data driven
- Dataset:
 - Dati raccolti da ATLAS durante il Run-3 (2022-2024)
 - Fondi simulati Monte Carlo: QCD dijet (dominante), top-antitop, V+jets;
 - Segnali utilizzati come benchmark (HVT YXH, HVT W'WW, Dark Jets).
- Regione di segnale definibile con un taglio sull'Anomaly Score
- Selezione degli eventi: 2 large-R jet per evento, preselezione e richiesta di trigger applicate
 - Possibilità di studiare i nuovi item di trigger basati su large R-jet, che permettono di recuperare eventi a bassa massa del sistema dijet ($1 \le m_{jj} \le 1.3 TeV$)

ANOMALY DETECTION IN STATI FINALI COMPLETAMENTE ADRONICI IN ATLAS

- Introdotte migliorie:
 - Aggiunte ai nodi dei grafi extra features tra cui la massa dei costituenti;
 - Feature degli edges modificati come $e^{-\Delta R}$;
- Nuove definizioni di grafo in architettura EGAT:
 - Jet-level come per LHC Olympics;
 - Event-level creando un grafo singolo per ogni coppia di jet dell'evento;
- Risultati preliminari sul fondo Monte Carlo QCD
 - Confronto tra gli score Event-level ottenuti con le due definizioni di grafo.

Grafo evento QCD dijet

Grafo evento YXH 3400 200

RISULTATI PRELIMINARI

Lo score Event-level è ottenuto moltiplicando gli score dei singoli jet (un grafo per jet)

YXH con m_Y = 3400 GeV e m_X = 200 GeV Fondo QCD MC di circa 1M di eventi

- Le tecniche **Anomaly detection** sono diventate parte integrante in HEP e vengono utilizzate su più fronti: ricerche BSM, identificazione e ricostruzione, metodi indipendenti dal modello, data quality monitoring
- I risultati ottenuti con la prima analisi AD in ATLAS (Y->XH) per la ricerca BSM molto incoraggianti
- L'utilizzo di tecniche ML avanzate come **GNN** rende l'applicazione in ambito di ricerche unsupervised BSM molto promettente ma allo stesso tempo molto complesso e impegnativo sotto diversi aspetti.
- Sviluppo in ATLAS di **un nuovo algoritmo AD nelle ricerche BSM** in stati finali completamente adronici:
 - R&D sul LHC Olympics dataset mostra risultati promettenti per la performance della GNN per la AD;
 - Analisi GNN per AD sul Run 3 dataset (analisi e risultati attesi entro il 2026)

INTRODUZIONE

- Il Modello Standard ha avuto un enorme successo sperimentale.
- Scoperta del Bosone di Higgs H⁰ nel 2012 da parte di ATLAS e CMS.

- Tante evidenze sperimentali che necessitano ancora di una spiegazione.
- Ad LHC non è stata osservata fisica che va oltre il Modello Standard (BSM).

16

Approccio model-dependent:

- Ricerca di uno specifico segnale;
- Selezione di eventi ottimizzata utilizzando le proprietà del segnale conosciute;
- La sensitività diminuisce per processi con segnale diverso dal modello scelto.

Approccio model-independent:

- Minime assunzioni sulle proprietà del segnale;
- Non ottimale come il model-dependent segnale per segnale, ma garantisce una ricerca a più ampio spettro.

ANOMALY DETECTION (AD)

AD in fisica delle particelle: identificazione, nei dati raccolti, di eventi con features inconsistenti con gli eventi di fondo

Prima di costruire i grafi viene eseguita una trasformazione ai jet:

Algorithm 1: Jet Alignment

Start

Boost jet in z direction until $\eta_{Jet} = 0$ Rotate jet about z axis until $\phi_{Jet} = 0$ Rescale jet four-vector such that $m_{Jet} = 0.25$ GeV Boost jet along its axis until $E_{Jet} = 1$ GeV Rotate jet about x axis until hardest constituent has $\eta_1 = 0, \phi_1 > 0$

JET-GRAPHS

R&D sul <u>LHC Olympics2020</u> dataset: è un dataset pubblico contenente simulazioni fondo + segnale utilizzato per studi di ML

- Eventi QCD dijet di fondo;
- $Z' \rightarrow XY \rightarrow q\bar{q}q\bar{q}$ segnale, con $m_{Z'} = 3.5 \ TeV$, $m_X = 500 \ GeV \in m_Y = 100 \ GeV$;

Architettura EGAT:

 $h_i^{(l)}$ = embedding delle features del nodo i al layer l-esimo

STRATEGIA ANOMALY DETECTION

La rete si allena seguendo l'obiettivo del Deep Support Vector Data Description:

La distanza dal centro della sfera così costruita è la nostra Anomaly Score (AS) = $\|\phi(G_i; W^*) - c\|^2$

Ottimizzazione: Pe

Per GIN:

Per EGAT:

$$Loss = \frac{1}{N} \sum_{i=1}^{N} \|\phi(G_i; W) - c\|^2 + \frac{\lambda}{2} \sum_{l=1}^{L} \|W^l\|_F^2 \qquad Loss = \frac{1}{N} \sum_{i=1}^{N} \|\phi(G_i; W) - c\|^2$$

ATLAS: A Toroidal LHC ApparatuS

Superconductive Magnetic System

Muon Spectrometer 25m

L'invariante relativistico $\eta = -ln\left[tg\left(\frac{\theta}{2}\right)\right]$ «pseudo-rapidità» è utilizzato al posto della θ

Calorimeter System