

Ricerca di nuova fisica prodotta in associazione ad un quark top ed energia trasversa mancante identificati tramite algoritmi di machine learning

Benedetta Argiento, per la collaborazione CMS

IFAE 2025 – Cagliari, 09 Aprile 2025

Introduzione

Domande aperte del Modello Standard:

- *formali*: gerarchia e interazione gravitazionale
- *sperimentali*: materia ed energia oscura

 \Rightarrow Ricerca di nuova fisica:

- Modelli che prevedono nuovi bosoni o fermioni pesanti (VLQ)
- Ricerca di Materia Oscura (Dark Matter – DM) con Simplified Models

\Rightarrow Segnature interessanti:

- Quark di terza generazione → rapporto privilegiato con il bosone di Higgs
- Particelle non rivelabili → energia trasversa mancante

Ricostruzione Top quark

All'interno di CMS i prodotti dell'adronizzazione vengono identificati con dei coni nel piano (η, ϕ)

RESOLVEDSEMI-RESOLVEDMERGED \downarrow \downarrow 2 jet Ak4 e b-jetW-jet e b-jet1 jet AK8

Algoritmo *anti-KT*:

- $R=0.4 \Rightarrow Jet stretto (AK4)$
- R=0.8 \Rightarrow Jet largo (AK8)

Vector-Like Quark/ $T \rightarrow tZ(\nu\nu)$

Stato finale:

- un forward jet (q')
- quark b taggato

Decadimento adronico del quark top:

- fully-resolved
- partially-merged
- fully-merged

- $Z \rightarrow \nu \nu$: energia mancante nello stato finale

Background: 1. $Z \rightarrow vv + jets$ 2. $W \rightarrow l v + jets$ 3. Coppie $t\bar{t}$ Diverse ipotesi di massa per T(0.6 \rightarrow 1.8 TeV) e per la larghezza di decadimento (1 al 30% di m_T)

<u>CMS-EX0-23-006</u>

CMS-B2G-19-004

Strategia di analisi/ $T \rightarrow tZ(\nu\nu)$

<u>CMS-B2G-19-004</u>

- $p_T^{miss} > 200 \text{ GeV} \rightarrow \text{neutrini}$
- $min\Delta\Phi_{\{MET, jet\}} > 0.6 \rightarrow rimozione eventi QCD$
- Veto elettroni e muoni

Gerarchia ottimizzata per raggiungere il miglior limite di esclusione previsto sull'intero intervallo di massa:

Nel caso *partially merged c'è un* ordine di grandezza in meno nell'efficienza di selezione rispetto al caso *resolved* e *merged*

⇒ necessità di migliorare la ricostruzione del top

Risultati/ $T \rightarrow tZ(\nu\nu)$

Fit simultaneo sulla massa nelle 6 regioni

 \Rightarrow nessuna evidenza di segnale

- \Rightarrow upper limit: 2,5 σ per
- $m_T = 1,4 TeV$ a larghezza ridotta

CMS-B2G-19-004

Ricerca di DM ai collider/Simplified models

Ipotesi:

- ϕ/a (scalare/pseudoscalare)
- $m_{\phi/a} = [50, 500] \, GeV$
- $g_{DM} = 1$
- $m_{\chi} = 1 \text{ GeV}$

Limiti alle sezioni d'urto χ -nucleone in funzione della massa della particella di DM: *ricerca diretta a CMS* e *ricerca indiretta*

Ricerca a CMS/*tDM* & *t*t̄*DM*

CMS-EX0-22-014

Risultati/*tDM* & *t*t̄*DM*

Fit simultaneo:

- p_T^{miss} per le regioni AH e SL;
- Neural Network per regione DL

138 fb⁻¹ (13 TeV)

Eccesso diffuso compatibile con il segnale è estato osservato nei dati

⇒ Upper limit: *esclusione* fino a 310 GeV per mediatore pseudoscalare e fino a 320 GeV per mediatore scalare

CMS-EX0-22-014

TROTA/Top Reconstruction: an Object Tagger Algorithm

Ogni candidato top è composto da un numero variabile di oggetti:

- 1. **Top Resolved**: 3 AK4 jet \rightarrow basso p_T
- 2. *Top Mixed*: combinazione di AK4 e AK8
- 3. *Top Merged*: 1 jet AK8 → Top tagger di ParticleNet

La **DNN** per la categorizzazione del top mixed è elabora due diversi input tenendo conto delle diverse configurazioni possibili:

- Variabili cinematiche e di alto livello dei jet ⇒ LSTM;
- Variabili cinematiche e di alto livello del *fatjet* ⇒ DNN;
- i due output vengono combinati in una *DNN comune*, che fornisce un unico risultato.

 \Rightarrow *score* sulla categorizzazione del top.

TROTA/prestazioni su tt̄ semilep

work in progress

Ricostruzione del quark top con best score

Private work (CMS data/simulation) (13 TeV) 91.2 91.

Identificazione: si evidenzia una migliore identificazione delle configurazione resolved e mixed rispetto alla configurazione merged ricostruita solamente con ParticleNet

Efficienza complessiva con tagging efficiency con un mistag rate del 1% \Rightarrow con TROTA si evidenzia una migliore ricostruzione della configurazione resolved e mixed anche a basso p_T

tDM + TROTA/strategia di analisi

Preselezione:

- $\circ p_T^{miss} > 200 \text{ GeV}$
- $\circ~$ No leptoni con $p_T>25~GeV$ e $|\eta|<2,5$
- forward jet $p_T > 50 \text{ GeV} e |\eta| > 3$

Selezione con la ricostruzione del quark top di TROTA: Configurazione **Resolved**:

- almeno un top resolved con $p_T > 160 \ \text{GeV}$
- nessun top mixed e merged

Configurazione Semi-Resolved:

- almeno un top mixed con $160 < p_T < 350 \mbox{ GeV}$
- nessun top merged e al più un top resolved

□ Configurazione Merged:

- almeno un top merged con $p_T > 350 \ \text{GeV}$
- al più un top mixed e un top resolved

Fit simultaneo sulle MET per le sei regioni ricostruite (Resolved, Semi-Resolved e Merged con e senza Forward Jet)

work in progress

tDM + TROTA/risultati

È stato utilizzato un *sottocampione dei dati del Run II,* non sufficiente per un'esclusione diretta del modello in considerazione.

Facendo proiezioni sull'intero dataset ⇒ *risultati comparabili* all'analisi attuale Estrapolando con l'aggiunta del canale tW ⇒ sensibilità anche all'ipotesi di *500 GeV*

work in progress

Conclusioni

 Il data taking del Run-II ha permesso di sondare numerosi canali ad energie mai viste prima, cercando di rispondere alle domande aperte del MS. Per i decadimenti con stati finali adronici di particelle del MS c'è molto spazio per tecniche nuove di ricostruzione e identificazione → algoritmi ML;

 Molto spazio delle fasi è ancora da esplorare e LHC continua a cercare nuova fisica in canali sempre più rari o energia maggiore
→ miglioramento delle tecniche sperimentali; C'è ancora margine di miglioramento, specie in vista delle analisi del Run-III attualmente in corso e per HL-LHC, le cui condizioni saranno ancora più difficili in termini di background. Grazie per l'attenzione

Benedetta Argiento – argiento@na.infn.it

BACKUP

CMS/Compact Muon Solenoid

CMS scheme sliced orthogonally to beam axis

- Silicon Tracker
- Electromagnetic calorimeter (ECAL)
- Hadron calorimeter (HCAL)
- Superconducting solenoid
- Muon system

TROTA/Top resolved

Buone prestazioni per top a basso p_T .

Input:

- area del jet;
- b-tagging score di ParticleNet;
- massa del jet;
- jet p_T ;
- $\Delta \eta (jet, \sum_{i=0}^{2} p^{jet,i})$ $\Delta \phi (jet, \sum_{i=0}^{2} p^{jet,i})$

Architettura:

- batch normalization layer;
- dense layer con 25 unità e ReLU come funzione di attivazione;
- dense layer con 30 unità e ReLU come funzione di attivazione;
- dense layer con 1 unità euna sigmoide come funzione di attivazione utilizzato come output layer.

TROTA/*Top mixed*

Range di p_T tra la regione resolved e quella mixed.

Input:

- area del jfatet;
- massa del fatjet;
- fatjet p_T , η , ϕ ;
- fatjet DeepJet b-tagging score;
- fatjet ParticleNet QCD tagging score;
- fatjet ParticleNet t tagging score;
- fatjet ParticleNet W tagging score.

Architettura:

- Jet AK4: Elaborati con strato LSTM (10 unità, attivazione "tanh") per catturare dipendenze sequenziali.
- Jet AK8: Elaborati con strato denso (9 unità, attivazione ReLU) per caratteristiche aggregate.
- Input Combinato: Massa AK4 + combinazione AK4/AK8 elaborati con strato denso (1 unità, attivazione ReLU).
- Elaborazione Finale: Tensore concatenato processato da strato denso (5 unità, attivazione ReLU).

CMS/coordinate system

Coordinate system of CMS inside LHC, where the z axis is along the beam and the x axis is towards the LHC centre

The (r, θ, ϕ) coordinate identifies a Lorentz invariant metric boosted alog the Z axis: \Rightarrow **Pseudorapidity**: $\eta = -\ln\left(\tan\frac{\theta}{2}\right)$ \Rightarrow **Angular distance**: $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ Other used quantities are: \Rightarrow **Tranverse momentum**: $p_T = \sqrt{p_x^2 + p_y^2}$ \Rightarrow **Tranverse energy**: $E_T = E \sin \theta$

Dark matter/evidence

Curva di rotazione, discrepanza rispetto alla previsione:

⇒ previsto una diminuzione
⇒ le misure mostrano un andamento asintotico

Lensing gravitazionale: distribuzione di materia in grado di curvare la traiettoria della luce ⇒ Non solo massa visibile

Velocità di rotazione delle galassie in funzione della distanza dal centro

Esempio di lensing gravistazionale (Einstein Ring)

Jet clustering

Algoritmi di ricombinazione sequenziale: in input inizia con un elenco di candidati ricostruiti all'interno del rivelatore

Simplified models/tDM & ttDM

Stato finale:

eccesso in MET come segnale

mediatore dell'interazione un bosone scalare o pseudoscalare con diverse ipotesi di massa

Canale Adronico (AH) / Semileptonico (SL) :

- 0 o1 leptone nello stato finale
- categorizzazione basata sui jet e b-jet
- analisi della MET dopo la selezione sulla base di variabili discriminanti

Canale *Dileptonico (DL)* :

- 2 leptoni nello stato finale
- MET elevata anche per i neutrini
 - ⇒ più complicata la discriminazione
- Multi Variate Analysis

Jet clustering

Algoritmi di ricombinazione sequenziale: in input inizia con un elenco di candidati ricostruiti all'interno del rivelatore

A raggio fisso ($R_{eff} = (0.4, 0.8)$):

- Anti-kT: n = -1;

- Cambridge/Aachen (CA): n = 0;

-kT: n = +1.

 d_{ij} : distanza tra due pseudo jet ΔR_{ij}^2 : distanza angolare nel piano (η, ϕ) d_{iB} : distanza di un pseudo jet dal fascio

HOTVR (Heavy Object Tagging with Variable Radius), n = 2:

$$R_{eff} = \begin{cases} \rho/p_T; \\ R_{min} \text{ per } \rho/p_T < R_{min}; \\ R_{max} \text{ per } \rho/p_T > R_{max}. \end{cases}$$

dove ρ rappresenta la pendenza di R_{eff} .

Ricostruzione dei jet/*anti-KT*

 ⇒ Collinear safety: l'algoritmo non è influenzato dalla scissione o fusione artificiale di partoni collinari
⇒ Infrared safety: l'algoritmo rimane insensibile all'emissione di gluoni morbidi, che hanno un impatto minimo sul momento del jet e sulla collimazione

Usando la metrica:
$$d_{ij} = \min\left(\frac{1}{p_{Ti}^2}, \frac{1}{p_{Tj}^2}\right) \frac{(\Delta R_{ij})^2}{R^2}$$
; $d_{iB} = \frac{1}{p_{Ti}^2}$

 Se d_{ij} < d_{iB}: le particelle si fondono in un'unica pseudoparticella.