Misura della massa del bosone W all'esperimento CMS

CMS-SMP-23-002

Ruben Forti

Incontri di Fisica delle Alte Energie 2025, Cagliari, 10/04/2025

Università di Pisa

European Research Council Established by the European Commission

Il settore elettrodebole del Modello Standard (SM)

Bosone W mediatore delle interazioni deboli cariche

- □ meccanismo di Higgs → massa non nulla
- la teoria descrive la relazione di m_w con altre quantità, parametri liberi del SM

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) = \frac{\pi \alpha(m_Z)}{\sqrt{2} G_\mu} \left(1 + \Delta r\right)$$

$$\Delta r = -\frac{3 G_F m_t^2}{8\sqrt{2}\pi^2} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} + \frac{11 G_F m_W^2}{24\sqrt{2}\pi^2} \ln \frac{m_H^2}{m_W^2}$$

$$\mathbf{w} = \mathbf{w} + \mathbf{w} +$$

Il settore elettrodebole del Modello Standard (SM)

Bosone W mediatore delle interazioni deboli cariche

- □ meccanismo di Higgs → massa non nulla
- la teoria descrive la relazione di m_w con altre quantità, parametri liberi del SM

$$m_{W}^{2}\left(1-\frac{m_{W}^{2}}{m_{Z}^{2}}\right) = \frac{\pi \alpha(m_{Z})}{\sqrt{2} G_{\mu}} \left(1+\Delta r\right)$$

$$\Delta r = -\frac{3 G_{F} m_{t}^{2}}{8\sqrt{2}\pi^{2}} \frac{\cos^{2} \theta_{W}}{\sin^{2} \theta_{W}} + \frac{11 G_{F} m_{W}^{2}}{24\sqrt{2}\pi^{2}} \ln \frac{m_{H}^{2}}{m_{W}^{2}} + \Delta r_{other}$$

$$Nuova$$

$$fisica?$$

$$m_{W}^{2} e^{\frac{1}{2}} e^$$

 $m_{W (\text{SM fit})} =$ 80.353 ± 0.006 GeV/c²

Produzione dei bosoni W ai collider adronici

Canale di decadimento leptonico (in µ):

- massa invariante dello stato finale non ricostruibile
- quantità cinematiche del leptone carico ben misurabili

Strategia: sfruttare osservabili sensibili a m_w

★ impulso trasverso $p_T^\ell = p^\ell \sin \theta$

Impulso trasverso del leptone carico

- misurabile con alta accuratezza e risoluzione
- picco "jacobiano" della distribuzione a $m_w/2$
- distribuzione fortemente dipendente dalla cinematica e polarizzazione del W
 - effetti di QCD, PDFs

La dipendenza da m_w è racchiusa nella **shape** della distribuzione

- ♦ $\Delta m_w = 10 \text{ MeV} \Rightarrow \text{variazione relativa ~ 0.001}$
- Necessario controllo eccezionale degli effetti che possono alterarne la forma

Stato dell'arte (... fino a autunno 2024)

- → Recente misura di CDF in tensione significativa col SM
- → Media ponderata delle restanti misure: $m_w = 80369.2 \pm 13.3$ MeV

Un W nell'esperimento CMS

Ricostruzione degli eventi

Selezione degli eventi

- Global muon
 - impulso misurato nel tracciatore
 - \circ rivelatori esterni \rightarrow alte

performance di identificazione

m_T > 40 GeV per soppressione
 del fondo

Circa 100M di candidati

ricostruiti, ~ 87% di purezza

Fonti di incertezza

Sistematiche teoriche

Problema principale: caratterizzazione della produzione del W

- □ Effetti di QCD → cinematica trasversa del W
- Dipendenza dalle PDFs → cinematica longitudinale,
 effetto indiretto sulla cinematica trasversa del muone
- Variazioni nei modelli teorici hanno un impatto sul p_T del muone *diverso* da quello di una variazione in m_w

Strategia adottata:

- 1) Dividere l'analisi in bin fini di η^{μ} (riduzione impatto delle PDF)
- 2) Modello approfondito per p_{τ}^{V} , ma non calibrato sulla Z
- Lasciare che i dati stessi adattino il modello per p_T^W, validazione indipendente con la Z

Efficienze di ricostruzione - 1

Templates MC alla base della misura di m_w

Correzioni locali alla simulazione sono fondamentali prima del fit ai dati

Solution State And Sta

Tecnica del Tag&Probe su eventi Z→µµ

- cinque step consecutivi di selezione della *probe* : *reco* * *tracking* * *ID* * *trigger* * *isolation*
- misure effettuate in bin di \mathbf{p}_{τ}^{μ} $\mathbf{\eta}^{\mu}$ \mathbf{q}^{μ}

Accortezze metodologiche:

- sottrazione del fondo è necessaria nei dati, fit alla massa invariante tag-probe
 - > differenti configurazioni per modello di segnale e fondo
- la selezione sulla probe non deve essere influenzata da quella sulla tag

 \succ dipendenza non trascurabile dall'*hadronic recoil* u_T per trigger e isolation

Efficienze di ricostruzione - 2

Ci si aspetta che l'andamento degli scale factors sia

regolare in funzione di $p_T (e u_T)$

- procedura di *smoothing* con polinomi
 - incertezza statistica: variazioni da matrice di covarianza postfit (diagonalizzata)
 - incertezza sistematica: rapporto alternativo/nominale

Più di 3000 nuisance parameters nel fit a m_w

Impatto totale di 3 MeV

Validazione

Due misure preliminari alla estrazione di m_w utilizzando dataset contenente eventi $Z \rightarrow \mu\mu$

- m_z dalla massa invariante μμ
 - validazione della calibrazione
 - > Risultato: $m_z m_z^{PDG} = -2.2 \pm 4.8 \text{ MeV}$
- m_7 da analisi "W-like" (un μ trattato come se fosse un ν)
 - validazione metodologia e input sperimentali e teorici
 - es. scale factors, modello per p_T^W
 - > Risultato: $m_z m_z^{PDG} = -6 \pm 14 \text{ MeV}$

Risultato finale

Source of uncertainty	Impact (MeV)
Muon momentum scale	4.8
Muon reco. efficiency	3.0
W and Z angular coeffs.	3.3
Higher-order EW	2.0
$p_{\rm T}^{\rm V}$ modeling	2.0
PDF	4.4
Nonprompt background	3.2
Integrated luminosity	0.1
MC sample size	1.5
Data sample size	2.4
Total uncertainty	9.9

Risultato finale

Risultato finale

In breve

🖈 🛛 Prima misura di m_w a CMS

- la più precisa a LHC
- accordo con il SM, tensione con CDF
- Utilizzate tecniche innovative nella trattazione delle incertezze di natura teorica e sperimentale
- Impiegato solo il 10% dei dati del Run2 di LHC, ampio spazio per ulteriori sviluppi
 - es. utilizzo dei dati del 2018, full-Run2
 con ridotto impatto di input teorici

Grazie per l'attenzione

ruben.forti@cern.ch

Helicity cross-section fit: misura di m_w dal fit simultaneo con $\sigma_i = \sigma_{UI} \times A_i$

- minor dipendenza da modelli teorici
- maggior incertezza complessiva, dovuta alla statistica finita dei template
 - primo risultato pubblicato: m_w = 80360.8 ± 15.2 MeV (in accordo con la misura "classica")

Modello per p_T^W

Strategia convenzionale: tuning della simulazione su eventi $Z \rightarrow \mu\mu$, predizione dello spettro per $W \rightarrow \mu v$ estratta da rapporto delle xsec. W/Z (teoriche)

> assunzioni model-dependent necessarie nella propagazione delle incertezze

Strategia adottata in CMS:

 NNLO in α_s, ma utilizzo di parton shower (PYTHIA) che raggiungono accuratezza leading-log (LL) a basso p_T^V

- Modello basato su simulazione MINNLO_{PS}, con correzioni:
 - > risommazioni con SCETlib: calcoli avanzati in QCD per raggiungere ordine N³LL in (p_{T}^{V}/m_{v})
 - effetti di natura non perturbativa (con SCETlib) -> Transverse Momentum Dependent PDFs
 - > ordine perturbativo fissato NNLO ad alto p_{τ} , tramite matching con DYturbo
- Incertezze associate ai diversi effetti:
 - > <u>Theory Nuisance Parameters</u> per le risommazioni
 - Modello *loose* per le incertezze associate ai modelli non perturbativi
 - > Variazione delle scale μ_{R} , μ_{F} per teoria perturbativa ad alto p_{T}

Modello per p_T^W - validazione

1) Analisi m_z "dilepton": ricostruzione 2) Analisi m_z W-like: spettro di p_T^2 nei dati dello spettro di $p_T^{\mu\mu}$ ricostruito tramite unfolding

La minimizzazione modifica i parametri del modello

Scale factors - validazione

Scale factors applicati per analisi m₇ W-like

- accordo data/MC ripristinato entro l'1-2%
- incertezze sistematiche in grado di coprire le rimanenti discrepanze

Ruben Forti - IFAE 2025 @ Cagliari

Backgrounds

CMS

Prompt: muoni da Z $\rightarrow\mu\mu$, Z \rightarrow TT, W \rightarrow TV (con uno dei due muoni fuori accettanza o T $\rightarrow\mu$ V), o da decadimento di top o eventi con due bosoni; contributo stimato da MC

Nonprompt: muoni da decadimenti di mesoni B/D in eventi multi-jet

- In gran parte soppressi dal taglio m_⊤ > 40 GeV
- contributo stimato con metodo data-driven "extended ABCD"
 - > Transfer factor T_f calcolato nelle regioni con m_T < 40 GeV e applicato alla regione *C* (in bin di $p_T^{\mu} \eta^{\mu} q^{\mu}$)
 - > Smoothing in funzione di p_{T} per ogni sideband
 - Validazione su sample arricchito di muoni da vertici secondari

$$m_T = \sqrt{2 \, p_T^\ell \, p_T^{miss} (1 - \cos \Delta \phi)}$$

Efficienze e hadronic recoil

Richieste sulla tag: isolamento + $p_{T} > 25 \text{ GeV} \rightarrow$

- Quando $p_T^{tag} > p_T^{probe}$, la probe tenderà a cadere nel cono dell'*hadronic recoil* → minor efficienza di isolamento
- effetto che dipende dalla distribuzione di p_T^Z e dell'angolo tra la Z e la probe (sul piano trasverso)
 - dipendenza racchiusa dalla osservabile u_T -
 - >> distribuzioni differenti rispetto al caso W→µv,
 bias da correggere nelle efficienze misurate

Soluzione implementata: misurare le efficienze di ricostruzione anche in funzione di u_{τ} (per trigger e isolation)

correzione di 0.4% nelle efficienze

Hadronic

Ruben Forti - IFAE 2025 @ Cagliari

20

u^W_T (GeV

 $tag \mu$

Confronto con CDF

- Misura effettuata a collider protone-antiprotone, migliore definizione dello stato iniziale (minor contributo di quark del mare, minor impatto delle PDF)
- minor quantità di materiale nell'apparato di tracciatura (< 0.2 X₀, vs 1-2 X₀ a CMS)
- misura include anche gli elettroni e sfrutta m_τ come distribuzione nel fit
- fit di likelihood senza profiling, non possibile un confronto diretto con CMS

Source	Uncertainty (MeV)	Source of uncertainty	Impact (Me	
Lepton energy scale	3.0	Muon momentum scale	4.8	
Lepton energy resolution	1.2	Muon reco. efficiency	3.0	
Recoil energy scale	1.2	White the termination of terminatio	5.0	
Recoil energy resolution	1.8	W and Z angular coeffs.	3.3	
Lepton efficiency	0.4	Higher-order EW	2.0	
Lepton removal	1.2	$p_{\rm T}^{\rm V}$ modeling	2.0	
Backgrounds	3.3	PDF	4.4	
$p_{\rm T}^{\rm Z}$ model	1.8	Nonprompt background	2.2	
p_T^W/p_T^Z model	1.3	Nonprompt background	5.2	
Parton distributions	3.9	Integrated luminosity	0.1	
QED radiation	2.7	MC sample size	1.5	
W boson statistics	6.4	Data sample size	2.4	
Total	9.4	Total uncertainty	9.9	

Confronto con ATLAS

- Analisi su dati del Run1 di LHC (7 TeV), pubblicato recentemente un update con sviluppi nella tecnica di fit (ora simile a quella utilizzata in CMS)
- ♦ misura include anche gli elettroni e sfrutta m_T come distribuzione nel fit
- rispetto a CMS, minori constraints ottenuti sulle PDFs e sulle incertezze della modellizzazione di processi di QCD

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

Nota: ATLAS quota i "global impacts", in cui i constraints in-situ ottenuti nel fit fanno parte dell'incertezza statistica

Source of upcontainty	Impact (MeV)				
Source of uncertainty	Nominal	Global			
Muon momentum scale	4.8	4.4			
Muon reco. efficiency	3.0	2.3			
W and Z angular coeffs.	3.3	3.0			
Higher-order EW	2.0	1.9			
$p_{\rm T}^{\rm V}$ modeling	2.0	0.8			
PDF	4.4	2.8			
Nonprompt background	3.2	1.7			
Integrated luminosity	0.1	0.1			
MC sample size	1.5	3.8			
Data sample size	2.4	6.0			
Total uncertainty	9.9	9.9			

