

Ricerca di coppie di bosoni di Higgs nello stato finale bbyy prodotte a LHC e rivelate con il detector ATLAS

R. Orlandini⁽¹⁾

in collaborazione con: **B. Di Micco**⁽¹⁾, **F. Montereali**⁽¹⁾

(1) Università degli Studi Roma Tre, INFN Roma Tre

Higgs Di-Boson Searches (HDBS)

Motivazione:

Nonostante l'incredibile successo del modello di rottura spontanea della simmetria elettro-debole, alcuni termini del potenziale di Higgs non sono ancora stati confermati sperimentalmente.

$$...la \text{ strada è ancora lunga..}$$
$$V(\phi^{\dagger}\phi) = \mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2} \subset \frac{1}{2}m_{H}^{2}H^{2} + \frac{\lambda_{3}}{4}H^{3} + \frac{\lambda_{4}}{4}H^{4}$$
$$...\text{ci stiamo avvicinando}$$

Approccio sperimentale:

Il metodo più diretto per ottenere una stima del termine

cubico del potenziale è lo studio della produzione di coppie di bosoni di Higgs (ancora mai osservata).

Osservabile $\kappa_{\lambda} = \lambda / \lambda_{SM}$

 $M(\kappa_{2V}, \kappa_V, \kappa_{\lambda}) = \kappa_{2V}M_1 + \kappa_V\kappa_{\lambda}M_2 + \kappa_V^2M_3$

Reference: $\sigma(pp \rightarrow H) \sim 56 \ pb^{[2]}$

• $W^+H\gamma\gamma$ • $ttH\gamma\gamma$ • $\gamma\gamma + jets$ $ggFH\gamma\gamma$ • $ggZH\gamma\gamma$ • $W^-H\gamma\gamma$ • tHjb $VBFH\gamma\gamma \bullet qqZH\gamma\gamma$

Nuovi metodi di analisi

Le HDBS sono limitate principalmente dalla ridotta statistica accumulata fin'ora.

Tuttavia, considerevoli miglioramenti in sensibilità si stanno recentemente ottenendo attraverso lo sviluppo e implementazione di tecniche di analisi avanzate.

GN2 (Graph Neural Network)

Aggiunte 2 iterazioni di fit cinematico con

ATLAS work in progress 0+1+2+3 Additional Jets

- 2 fotoni 'tight' e isolati
 - $\frac{p_T}{2}$ > 0.35(0.25) per *µ*-in-jet + PtReco calibration (BCal)

Fit Cinematico

- fotoni (sub)leading
- $105 < m_{\nu\nu} < 160 \text{ GeV}$

Categorizzazione:

dati vengono divisi in 2 categorie sulla base del valore della variabile m^*_{bbvv} :

- High Mass (HM) $m^*_{bb\gamma\gamma} > 350 \text{ GeV}$
- Low Mass (LM) $m^*_{bb\nu\nu} \leq 350 \text{ GeV}$

Nessun leptone

 $(|\eta| < 2.5)$

Un **BDT** viene allenato indipendentemente per le 2 regioni per rigettare ancor più fondo e suddividere ulteriormente le categorie.

Analisi statistica

L'analisi statistica finale viene eseguita con un fit 'unbinned' simultaneo della variabile $m_{\nu\nu}$ su tutte le **7 categorie**.

diversi obiettivi:

1^a iterazione

Miglioramento della risoluzione m_{bb} (~15%) attraverso il bilanciamento per evento dell'impulso trasverso (p_T) .

2^a iterazione

Miglioramento della ricostruzione della vaiabile $m^*_{bb\gamma\gamma}$ (~40%) ottenuto vincolando m_{bb} alla massa dell'Higgs.

Referenze: [1] PhysRevD.106.052001 [2] arXiv:2207.08615

Nuovo sistema di **b-tagging**.

Sostituisce il precedente **DL1r**

campione e permettendo una

selezione dei b-jet.

portando a una maggiore purezza nel

migliore ottimizzazione del WP della

