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The goals of this thesis are to:

@ Develop a general-purpose clustering library based on the CLUE
algorithm

Simone Balducci 20 September 2024 2/26



Goals of the thesis

The goals of this thesis are to:

@ Develop a general-purpose clustering library based on the CLUE
algorithm

@ Achieve performance portability using the Alpaka library

Simone Balducci 20 September 2024 2/26



Goals of the thesis

The goals of this thesis are to:
@ Develop a general-purpose clustering library based on the CLUE
algorithm
@ Achieve performance portability using the Alpaka library
@ Benchmark the library and assess the quality of the results

Simone Balducci 20 September 2024 2/26



Goals of the thesis

The goals of this thesis are to:

@ Develop a general-purpose clustering library based on the CLUE
algorithm

@ Achieve performance portability using the Alpaka library
@ Benchmark the library and assess the quality of the results

@ Apply the library to several problems regarding different branches of
science, in order to show its generality
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Clustering

@ Clustering is used to group data based on some measure of proximity

or similarity
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Clustering

@ Clustering is used to group data based on some measure of proximity

or similarity
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@ It's a widely used technique because it allows to reconstruct classes of
objects when there is no truth information available
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Density-based clustering

Density-based clustering finds clusters by indentifying regions with high
density of points.
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Density-based clustering

Density-based clustering finds clusters by indentifying regions with high
density of points.

This presents several advantages:
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@ it doesn’t require a-priori knowledge of the number of clusters
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Density-based clustering

Density-based clustering finds clusters by indentifying regions with high
density of points.

This presents several advantages:

@ it works well with clusters of irregular shapes
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@ it doesn’t require a-priori knowledge of the number of clusters
@ it works well with data full of noise and outliers
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The importance of weighted clustering

@ In weighted clustering each point is assigned a weight

@ The clusters are constructed taking the weights into account
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The importance of weighted clustering

@ In weighted clustering each point is assigned a weight
@ The clusters are constructed taking the weights into account
@ Weights can be used to represent: signal measures, prior knowledge

@ Widely used in many applications: customer segmentation, image
segmentation, social network analysis, anomaly detection, biological
analysis
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There is a need for weighted density-based solutions

@ Most density-based algorithms don't support weighted clustering
out-of-the-box

—> They need hand-made modifications to the dataset or to the distance
matrix
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There is a need for weighted density-based solutions

@ Most density-based algorithms don't support weighted clustering
out-of-the-box
—> They need hand-made modifications to the dataset or to the distance
matrix
@ There is a need for an alternative solution that combines the power of
density-based algorithms with the generality of weighted clustering
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£oonE

CLUE (CLUstering of Energy) is a density-based clustering algorithm
used in the CMS experiment at LHC

It was originally designed for the clustering of hits in the calorimeters

Each point has a weight which is used when calculating the densities

The weights are the energy deposit measurements of the detector
layer sensors

Reference: https://www.frontiersin.org/journals/big-data/
articles/10.3389/fdata.2020.591315/full#B16
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Description of the algorithm
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a — Computation of the local density for each point

b — Selection of the nearest highers
¢ — Finding clusters and outliers

d — Assigning clusters
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density
= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension

6=0.1, pc=1.0, 6,=1.0
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density

= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density
= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension

6=0.9, p=1.0, 6,=0.5
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density
= pc, density cut-off for promotion to cluster seed
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density
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= ., size of query range for cluster extension
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density

= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density

= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density

= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density

= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density

= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension

6=1.5, pc=2.0, 6,=10.0
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density

= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension

6.=1.5, pc=5.0, 6,=10.0
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The parameters of CLUE

3 parameters:

= )., size of query range for computation of local density
= pc, density cut-off for promotion to cluster seed
= ., size of query range for cluster extension

6=1.5, p=10.0, 6,=10.0
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From CLUE ...

@ CLUE was specifically tailored to work in the CMS detector
@ 2-dimensional clustering for each of the layers

@ Could not be used on a general dataset
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From CLUE ... to CLUEstering

o CLUEstering provides a generalization of CLUE

= It's a general-purpose library
= Applicable to any number of dimensions
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From CLUE ... to CLUEstering

o CLUEstering provides a generalization of CLUE

= It's a general-purpose library
= Applicable to any number of dimensions

@ Provides a Python interface to the C++ backend, which makes it
easily usable by the machine learning community
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What can CLUEstering be used for?

@ The implementation of CLUEstering makes it very general
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What can CLUEstering be used for?

The implementation of CLUEstering makes it very general
@ It can be applied to a large variety of problems that use clustering
= in particular density-based clustering

The main requirement is that data provides numerical coordinates

Two examples:

—> vertex reconstruction in particle physics
= star detection in astronomy

Simone Balducci 20 September 2024 12 /26



Example 1: Vertex reconstruction (vertexing)

@ Vertexing is the reconstruction of the interaction points (vertices) of
the particle tracks

@ The reconstructed vertices (recos) are compared to simulated vertices
(sims)

@ There is a match if recos and sims share at least 40% of the points
(tracks)

@ The relationship between recos and sims is a Many-To-Many
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Useful definitions in vertexing

Efficiency: fraction of sims associated to at least one reco
pure: a reco where less than 20% of the points are noise
duplicate: a sim associated to more than 1 reco

merged: a reco associated to more than 1 sim

fake: a reco associated to 0 sims
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CLUEstering for vertexing

Simulation from an official sample of the CMS tracker community.

Clustering done using the z coordinate of the tracks and pr as weight

Efficiency/Purity vs 6,, 6.=0.2, p.=10.0
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Example 2: Star detection in astronomy

CCD Image
1000 7
. &
800 ..
. I a
= g -
= 6001 ¥
B R e
] i B 1
> 4001 . R - r
% s z
.
. K -
200 - . . -
et 5 R
i i .. e
0 200 400 600 800 1000 1200 1400
x [pixels]

@ Modern telescopes use CCDs (charge-coupled devices) to convert

impinging photons into electrons

@ Each pixel contains the number of electrons
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CLUEstering for star detection

Comparison of the PSF (Point Spread Function) image and the stars
detected by CLUEstering
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The advent of big data

oh

@ The amount of data being produced keeps increasing in every branch
of science

@ Software needs to continually improve in order to handle the
increasing volume of data
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The software portability challenge

@ Nowadays there are many different types of processors available

@ Heterogeneous computing platforms are becoming increasingly
popular for demanding tasks
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@ Heterogeneous computing platforms are becoming increasingly
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The software portability challenge

@ Nowadays there are many different types of processors available

@ Heterogeneous computing platforms are becoming increasingly
popular for demanding tasks

@D Arm s A
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@ To support several platforms, often many different code-bases have to
be developed and maintained

@ We want to write software in a way that works on many possible
platforms while achieving near-native performance for each one

= Performance portability libraries
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Software performance portability

@ Performance portability libraries allow to:
write code once — compile backends separately — run on different
backends
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Software performance portability

@ Performance portability libraries allow to:
write code once — compile backends separately — run on different

backends
@ There are many options currently available or under development

a
GvcL OpenCL [ kokk osOpenMP

s alraka G aaptmecsr
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Performance portability in CLUEstering

o CLUE is a highly-parallel algorithm
@ It's designed to work well on heterogeneous platforms
@ The backend of CLUEstering is implemented with Alpaka

@ Users can run the clustering on any backend with a single command

alaka

ol 3
https://github.com/alpaka-group/alpaka
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A representative dataset

@ This dataset is representative of a common clustering ploblem
@ The clusters are surrounded by noise, which mimics physical data

@ CLUEstering reconstructs all the clusters correctly and the results are
not affected by the noise
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Scaling with dataset size

Parallel accelerators provide a 10x speed-up with respect to serial

execution.
Intel(R) Xeon(R) Gold 6130 CPU, Tesla T4 GPU
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Comparison with other algorithms

Finally, how does CLUEstering compare with two of the most popular
density-based algorithms against typical benchmarking datasets?

CLUEstering vs. DBSCAN vs. HDBSCAN execution times

140 HEm CLUEstering
mmm DBSCAN
120 4 mmm HDBSCAN

1001

801

60 -

Execution time (ms)

40 A

20 -

Blob dataset Moon dataset Aniso dataset

Note: The lower the better.
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Conclusions

o CLUEstering is a density-based weighted clustering library
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Conclusions

o CLUEstering is a density-based weighted clustering library
@ It can be applied to almost any clustering problem

@ lts use of heterogeneous platforms and its performance portability
make it stand out from most other clustering libraries

@ It's open source and available on github
https://github.com/cms-patatrack/CLUEstering

@ Can be easily installed with a simple pip install command
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CLUEstering for star detection: silhouette scores

Samples

Silhouette Scores
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CLUEstering for star detection: comparison of fluxes

Compare the fluxes obtained using CLUEstering with DAOStarFinder and

aperture photometry.
Execution time: 59 42 ms for CLUE and 262 &+ 15 ms for DAOStarFinder

DAOStarFinder vs CLUEstering stars fluxes
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Profiling results

Intel(R) Xeon(R) Gold 6130 CPU, Tesla T4 GPU
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Blob datasets
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Results on the blob dataset
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Scaling with number of dimensions

Intel(R) Xeon(R) Gold 6130 CPU, Tesla T4 GPU
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Aniso dataset
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Results on the aniso dataset
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Moon dataset
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Results on the moon dataset

Truth label 1.0 Clustering metrics
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Backup: CLUEstering for vertexing (cont.)

Clustering done using the z coordinate of the tracks and pr as weight
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