
CLUEstering: a high-performance density-based
clustering library for scientific computing

Presented by: Simone Balducci

Supervisor: Daniele Bonacorsi
Co-supervisors: Francesco Giacomini, INFN-CNAF

Felice Pantaleo, CERN
Wahid Redjeb, CERN

Alma Mater Studiorum – Università di Bologna
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Goals of the thesis

The goals of this thesis are to:

Develop a general-purpose clustering library based on the CLUE
algorithm

Achieve performance portability using the Alpaka library

Benchmark the library and assess the quality of the results

Apply the library to several problems regarding different branches of
science, in order to show its generality
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Clustering

Clustering is used to group data based on some measure of proximity
or similarity

It’s a widely used technique because it allows to reconstruct classes of
objects when there is no truth information available
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Density-based clustering

Density-based clustering finds clusters by indentifying regions with high
density of points.

This presents several advantages:

it works well with clusters of irregular shapes

it doesn’t require a-priori knowledge of the number of clusters

it works well with data full of noise and outliers
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The importance of weighted clustering

In weighted clustering each point is assigned a weight

The clusters are constructed taking the weights into account

Weights can be used to represent: signal measures, prior knowledge

Widely used in many applications: customer segmentation, image
segmentation, social network analysis, anomaly detection, biological
analysis
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There is a need for weighted density-based solutions

Most density-based algorithms don’t support weighted clustering
out-of-the-box

➙ They need hand-made modifications to the dataset or to the distance
matrix

There is a need for an alternative solution that combines the power of
density-based algorithms with the generality of weighted clustering
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The CLUE algorithm

CLUE (CLUstering of Energy) is a density-based clustering algorithm
used in the CMS experiment at LHC

It was originally designed for the clustering of hits in the calorimeters

Each point has a weight which is used when calculating the densities

The weights are the energy deposit measurements of the detector
layer sensors

Reference: https://www.frontiersin.org/journals/big-data/
articles/10.3389/fdata.2020.591315/full#B16
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Description of the algorithm

 a → Computation of the local density for each point

 b → Selection of the nearest highers

 c → Finding clusters and outliers

 d → Assigning clusters
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The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension
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The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension
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The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension
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The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension
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The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension
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The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension
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The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=0.1, c=1.0, o=1.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=0.5, c=1.0, o=0.5

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=0.5, c=1.0, o=1.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=0.9, c=1.0, o=0.5

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=0.9, c=1.0, o=1.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=1.0, o=0.5

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=1.0, o=1.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=1.0, o=1.5

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=1.0, o=2.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=1.0, o=10.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=2.0, o=10.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=5.0, o=10.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
Feature 1

5

10

15

20

25

Fe
at

ur
e 

2

c=1.5, c=10.0, o=10.0

Simone Balducci 20 September 2024 9 / 26



The parameters of CLUE

3 parameters:

➙ δc , size of query range for computation of local density
➙ ρc , density cut-off for promotion to cluster seed
➙ δo , size of query range for cluster extension
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From CLUE ...

CLUE was specifically tailored to work in the CMS detector

2-dimensional clustering for each of the layers

Could not be used on a general dataset
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From CLUE ... to CLUEstering

CLUEstering provides a generalization of CLUE

➙ It’s a general-purpose library
➙ Applicable to any number of dimensions

Provides a Python interface to the C++ backend, which makes it
easily usable by the machine learning community

Simone Balducci 20 September 2024 11 / 26



From CLUE ... to CLUEstering

CLUEstering provides a generalization of CLUE

➙ It’s a general-purpose library
➙ Applicable to any number of dimensions

Provides a Python interface to the C++ backend, which makes it
easily usable by the machine learning community

Simone Balducci 20 September 2024 11 / 26



What can CLUEstering be used for?

The implementation of CLUEstering makes it very general

It can be applied to a large variety of problems that use clustering

➙ in particular density-based clustering

The main requirement is that data provides numerical coordinates

Two examples:

➙ vertex reconstruction in particle physics
➙ star detection in astronomy

Simone Balducci 20 September 2024 12 / 26



What can CLUEstering be used for?

The implementation of CLUEstering makes it very general

It can be applied to a large variety of problems that use clustering

➙ in particular density-based clustering

The main requirement is that data provides numerical coordinates

Two examples:

➙ vertex reconstruction in particle physics
➙ star detection in astronomy

Simone Balducci 20 September 2024 12 / 26



What can CLUEstering be used for?

The implementation of CLUEstering makes it very general

It can be applied to a large variety of problems that use clustering

➙ in particular density-based clustering

The main requirement is that data provides numerical coordinates

Two examples:

➙ vertex reconstruction in particle physics
➙ star detection in astronomy

Simone Balducci 20 September 2024 12 / 26



What can CLUEstering be used for?

The implementation of CLUEstering makes it very general

It can be applied to a large variety of problems that use clustering

➙ in particular density-based clustering

The main requirement is that data provides numerical coordinates

Two examples:

➙ vertex reconstruction in particle physics
➙ star detection in astronomy

Simone Balducci 20 September 2024 12 / 26



Example 1: Vertex reconstruction (vertexing)

Vertexing is the reconstruction of the interaction points (vertices) of
the particle tracks

The reconstructed vertices (recos) are compared to simulated vertices
(sims)

There is a match if recos and sims share at least 40% of the points
(tracks)

The relationship between recos and sims is a Many-To-Many
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Useful definitions in vertexing

Efficiency: fraction of sims associated to at least one reco

pure: a reco where less than 20% of the points are noise

duplicate: a sim associated to more than 1 reco

merged: a reco associated to more than 1 sim

fake: a reco associated to 0 sims
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CLUEstering for vertexing

Simulation from an official sample of the CMS tracker community.
Clustering done using the z coordinate of the tracks and pT as weight

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
o

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y/
Pu

rit
y

Efficiency/Purity vs o, c=0.2, c=10.0

Efficiency
Purity

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
o

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

s

Rates vs o, c=0.2, c=10.0
Fake Rate
Duplicate Rate
Merge Rate

Reminder: δo indicates the size of query region used for cluster extension
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Example 2: Star detection in astronomy

Modern telescopes use CCDs (charge-coupled devices) to convert
impinging photons into electrons

Each pixel contains the number of electrons
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CLUEstering for star detection

Comparison of the PSF (Point Spread Function) image and the stars
detected by CLUEstering
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The advent of big data

The amount of data being produced keeps increasing in every branch
of science

Software needs to continually improve in order to handle the
increasing volume of data
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The software portability challenge

Nowadays there are many different types of processors available

Heterogeneous computing platforms are becoming increasingly
popular for demanding tasks

To support several platforms, often many different code-bases have to
be developed and maintained

We want to write software in a way that works on many possible
platforms while achieving near-native performance for each one

➙ Performance portability libraries
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Software performance portability

Performance portability libraries allow to:
write code once → compile backends separately → run on different
backends

There are many options currently available or under development
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Performance portability in CLUEstering

CLUE is a highly-parallel algorithm

It’s designed to work well on heterogeneous platforms

The backend of CLUEstering is implemented with Alpaka

Users can run the clustering on any backend with a single command

https://github.com/alpaka-group/alpaka
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A representative dataset

This dataset is representative of a common clustering ploblem

The clusters are surrounded by noise, which mimics physical data

CLUEstering reconstructs all the clusters correctly and the results are
not affected by the noise
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Scaling with dataset size

Parallel accelerators provide a 10× speed-up with respect to serial
execution.
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Comparison with other algorithms

Finally, how does CLUEstering compare with two of the most popular
density-based algorithms against typical benchmarking datasets?
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Conclusions

CLUEstering is a density-based weighted clustering library

It can be applied to almost any clustering problem

Its use of heterogeneous platforms and its performance portability
make it stand out from most other clustering libraries

It’s open source and available on github
https://github.com/cms-patatrack/CLUEstering

Can be easily installed with a simple pip install command
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CLUEstering for star detection: silhouette scores
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CLUEstering for star detection: comparison of fluxes

Compare the fluxes obtained using CLUEstering with DAOStarFinder and
aperture photometry.
Execution time: 59± 2ms for CLUE and 262± 15ms for DAOStarFinder
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Profiling results
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Blob datasets
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Results on the blob dataset
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Scaling with number of dimensions
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Aniso dataset
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Results on the aniso dataset
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Moon dataset
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Results on the moon dataset
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Backup: CLUEstering for vertexing (cont.)

Clustering done using the z coordinate of the tracks and pT as weight
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